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ABSTRACT 

The flow structure and the energy dissipation rate are greatly different between an undular jump and a breaking 
jump. A depth-integral model that can calculate both undular and breaking jumps is required for the design of 
hydraulic structures in rivers. This paper proposes a new non-hydrostatic quasi three-dimensional model (Q3D-
FEBS) that introduces the flow equations on boundary surfaces (a free surface and a bottom surface). 
Calculation results of Q3D-FEBS well explain water surface profiles and velocity distributions of the previous 
experiments of undular and breaking jumps. In addition, based on a numerical experiment, it is shown that Q3D-
FEBS can calculate the transitional process from an undular jump to a breaking jump by analyzing the flow 
separation at the water surface using the flow equations on boundary surfaces. 

Keywords: Undular jump; breaking jump; non-hydrostatic pressure; depth-integral model; Q3D-FEBS 

1 INTRODUCTION 
A hydraulic jump occurs in various forms depending mainly on the Froude number (Fr). The forms can be 

divided roughly into following two types. For 1.7 > Fr > 1, a wavy water surface is formed downstream of a 
hydraulic jump and the jump called an undular jump. For Fr > 1.7, a surface roller develops just below the water 
surface of a hydraulic jump and the jump called a breaking jump. Since the flow structure and the energy 
dissipation rate of the undular and breaking jumps are greatly different from each other, it is necessary to 
accurately predict the forms of the jump under given hydraulic conditions. 3D-RANS and MPS are effective 
method for such problems. However, more efficient method based on a depth-integral model is needed for 
large-scale flows varying in time and space such as flows around hydraulic structures in rivers during floods. 
Although many researchers have proposed depth-integral models for hydraulic jumps, there is no depth-integral 
model that can calculate both undular and breaking jumps including the transitional process between the jumps. 

Most of the models for undular jumps have been developed based on the Boussinesq type equation that 
considers non-hydrostatic pressure due to the curvature of the water surface (e.g. Serre 1953, Iwasa 1955, 
Hosoda & Tada 1994 and Castro-Orgaz et al. 2015), and usually neglect the velocity distributions along vertical 
direction. In contrast, the models for breaking jumps have been developed based on the strip integral method 
that assumes velocity distributions within the jump using the wall jet theory or polynomials (Narayanan 1975, 
McCorquodale & Khalifa 1983, Tsubaki 1949 and Madsen & Svendsen 1983), and neglect non-hydrostatic 
pressure in many cases. In order to calculate both undular and breaking jumps in the framework of the depth-
integral model, it is necessary to model the three-dimensional velocity and the non-hydrostatic pressure 
distributions in a generalized manner as much as possible. 

This paper proposes a new non-hydrostatic quasi three-dimensional model (Q3D-FEBS) that introduces 
the flow equations on the boundary surfaces (free surfaces and bottom surfaces) and investigates the 
applicability of Q3D-FEBS to the calculation of undular and breaking jumps including the transitional process 
between the jumps by using the previous experiments and a numerical simulation. 

2 GORVERNING EQUATIONS OF Q3D-FEBS 
The definition sketch of Q3D-FEBS (Ohno et al, 2018) is shown in Figure 1. We define the bottom surface 

𝑧𝑏 slightly above the bed surface 𝑧0. A vertical coordinate is given as 𝜂 = (𝑧𝑠 − 𝑧)/ℎ and approximates vertical 
distributions of the horizontal velocities by third-order polynomials. 

𝑢𝑖 = ∆𝑢𝑖(12𝜂3 − 12𝜂2 + 1) + 𝛿𝑢𝑖(−4𝜂3 + 3𝜂2) + 𝑈𝑖 [1]
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Where, 𝑖 = 1, 2 (𝑥1 = 𝑥, 𝑥2 = 𝑦), 𝑢𝑖 : velocity in 𝑖 direction, 𝑈𝑖 : depth-average velocity in 𝑖 direction, 𝑢𝑠𝑖 : water 
surface velocity in 𝑖 direction, 𝑢𝑏𝑖: bottom surface velocity in 𝑖 direction, ∆𝑢𝑖 = 𝑢𝑠𝑖 − 𝑈𝑖, 𝛿𝑢𝑖 = 𝑢𝑠𝑖 − 𝑢𝑏𝑖, 𝑧𝑠: water 
level, ℎ: water depth. The boundary conditions used in the derivation of Eq. [1] are as follows. 

𝑢𝑖 = 𝑢𝑠𝑖 ,  ∂𝑢𝑖 𝜕𝑧⁄ = 0 𝑎𝑡 𝜂 = 0 (𝑧 = 𝑧𝑠) [2] 

𝑢𝑖 = 𝑢𝑏𝑖 𝑎𝑡 𝜂 = 1 (𝑧 = 𝑧𝑏) [3] 

∫ 𝑢𝑖

1

0

𝑑𝜂 (=
1

ℎ
∫ 𝑢𝑖

𝑧𝑠

𝑧𝑏

𝑑𝑧) = 𝑈𝑖 [4] 

Figure 1. Definition sketch of Q3D-FEBS. 

Q3D-FEBS solves the equations of motion on a free surface (𝜂 = 0) and a bottom surface (𝜂 = 1) in addition 
to the depth-integral flow equations shown by Eq. [5] and Eq. [6] to calculate the unknown quantities of Eq. [1]. 
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Where, 𝜌: density of water, 𝑢𝑖
′ = 𝑢𝑖- 𝑈𝑖, 𝑔: acceleration of gravity, 𝑝′: non-hydrostatic pressure, 𝜈𝑡: eddy viscosity,

𝜏̂𝑏𝑖 : bottom shear stress in 𝑖 direction, 𝑆̂ = √1 + (𝜕𝑧𝑏 𝜕𝑥𝑖⁄ )2. Overbar “–“ represents a depth-averaged value. Eq. 

[6] has the non-hydrostatic pressure terms and they are calculated from Eq. [7] derived from the depth-integral
equation of motion in vertical direction.
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Where,𝑊: depth-average velocity in vertical direction, 𝑤𝑠: water surface velocity in vertical direction, 𝑤𝑏: bottom 
surface velocity in vertical direction. 𝑊 is obtained from Eq. [1] and the equation of continuity. 
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𝑤𝑠 and 𝑤𝑏 are given from the kinematic boundary conditions at a water surface and a bottom surface.
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Eq. [10] and Eq. [11] are the equations of motion on a water surface (𝜂 = 0) and a bottom surface (𝜂 = 1). 
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Where, 𝜏̂0𝑖: bed shear stress in 𝑖 direction, 𝛿𝑧𝑏 = 𝑐𝑧𝑏ℎ, 𝑐𝑧𝑏  = 0.03. The shear stress and pressure at a water 
surface are assumed 0. The gradient of the non-hydrostatic pressure in vertical direction at a water surface and 
a bottom surface are calculated from Eq. [12] derived from the equations of motion in the vertical direction on a 
water surface and a bottom surface. 
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The bottom shear stress and the bed shear stress are evaluated by Eq. [13] and Eq. [14], respectively. 

𝜏̂0𝑖 = 𝜌𝑐𝑏
2𝑢𝑏𝑖|𝒖𝒃|，𝜏̂0𝑧 = 𝜌𝑐𝑏

2𝑤𝑏|𝒖𝒃| [13] 

𝜏̂𝑏𝑖 = 𝜈𝑡𝑏

𝜕𝑢𝑖

𝜕𝑧
|

𝑏
，𝜏̂𝑏𝑧 =

𝜏̂0𝑧

𝑐𝑧𝑏 + 1
[14] 

𝑐𝑏 =
𝐶0

1 − 2𝐶0 𝜅⁄
√1 + 𝑐𝑧𝑏 , 𝐶0 = √

𝑔𝑛2

ℎ1 3⁄ [15] 

Where, 𝜕2𝑢𝑖 𝜕𝑧2⁄ |𝑠 = (−24∆𝑢𝑖 + 6𝛿𝑢𝑖)/ℎ2, 𝜕𝑢𝑖 𝜕𝑥⁄ |𝑠 = (−12∆𝑢𝑖 + 6𝛿𝑢𝑖)/ℎ, 𝑛: Manning’s roughness coefficient,
𝜅 = 0.41. 

Q3D-FEBS introduces the one equation turbulence model shown in Eq. [16] and Eq. [17] to analyze the 
energy dissipation process due to a hydraulic jump. These equations are derived by approximating the vertical 
distribution of the turbulent kinetic energy with the third-order polynomial as in Eq. [1]. 
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Where, 𝐾: depth-average turbulent kinetic energy, 𝑘𝑠: turbulent kinetic energy at a water surface, 𝑘𝑏: turbulent 

kinetic energy at a bottom surface, 𝑃𝑘: depth-average production rate of turbulent kinetic energy,𝜎𝑘 = 1.0, 𝑐𝑑 = 

0.08, 𝑙𝑑  = 𝑐𝑙ℎ, 𝑐𝑙=0.07, 𝑐ℎ=0.5. The eddy viscosities are given as 𝜈𝑡 = 𝑙𝑑√𝐾, 𝜈𝑡𝑠 = 𝑙𝑑√𝜈𝑡𝑠, 𝜈𝑡𝑏 = 𝑙𝑑√𝜈𝑡𝑏.

3 Application to the previous experiments of undular and breaking jumps 
Q3D-FEBS is applied to the previous experiments of an undular jump (Chanson 1993) and a breaking jump 

(Chacherea & Chanson 2010). The experimental conditions are shown in Table 1. 

Table 1. Conditions of the previous experiments of an undular jump and a breaking jump. 

Forms of 
the jump 

Channel 
length 

Channel 
width 

Channel 
slope 

Rate of 
flow 

Fr Re 
Aspect 

ratio 

Chanson 
1993. 

Undular 
jump 

20 m 0.25 m 1/225 
4.96 

10-3m3/s
1.27 2.1×104 8.7 

Chacherea 
& Chanson 
2010. 

Breaking 
jump 

3.2 m 0.5 m Horizontal 
44.6 

10-3m3/s 3.1 8.9×104 11.0 

In the undular jump experiment (Chanson 1993), the location of the jump was controlled between 9.5 m 
and 15 m from the upstream end of the channel. Water depths and pressure distributions were measured on 
the centerline of the channel using a pointer gauge and a Pitot tube. The calculation was performed under the 
same conditions as the experiment. In order to investigate the influences of a computational grid size ∆𝑥 on the 

calculation results, ∆𝑥 = 0.01 m(∆𝑥/ℎ2  ≅ 0.25, ℎ2：downstream sequent depth) and ∆𝑥 = 0.004 m(∆𝑥/ℎ2  ≅ 

0.1) were used. Figure 2 shows the comparison of measured and calculated water depth profiles. The 
longitudinal distance and the water depths are normalized by the critical depth ℎ𝑐, respectively. The calculation 
results tend to overestimate an attenuation of the waves seen in the measured data. The calculated water 
surface profile of ∆𝑥 = 0.01 m indicated by a black solid line can explain the experimental data up to the first 
wave crest. On the other hand, the result of ∆𝑥 = 0.004 m indicated by a red solid line can reproduce the 
measured data up to the second wave trough. Figure 3 shows the comparison of the vertical distributions of 
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measured and calculated pressure intensity at the crest and trough of the first and second waves on the channel 
centerline. The distributions of the pressure intensity are normalized by the hydrostatic pressure intensity at a 

bottom surface and the black solid lines in Figure 3 indicate hydrostatic pressure distributions. As shown in ○ 

and ×, the pressure intensity of the undular jump is lower at the crest and higher at the trough compared to the 

hydrostatic pressure distributions. The pressure distributions calculated by Q3D-FEBS using ∆𝑥 = 0.004 m are 
in good agreement with measured data, but the results using ∆𝑥  = 0.01 m cannot explain the pressure 
distribution at the trough of the second wave. The calculation results are sensitive to the size of ∆𝑥. This is 
because the non-hydrostatic pressure caused by the curvature of the water surface is important for analysis of 
the undular jump. Q3D-FEBS can explain the water surface profile of the undular jump up to the second wave 
by using ∆𝑥 of about 1/10 of the water depth. 

Figure 2. Comparison of measured and calculated water depth profiles of an undular jump. 

Figure 3. Comparison of the vertical distributions of measured and calculated pressure intensity at the crest 
and trough of the first and second waves of the undular jump. 

In the breaking jump experiment (Chacherea & Chanson 2010), the location of the jump was fixed about 

1.5 m from the upstream end of the channel. The calculation was performed under the same conditions as the 

experiment and ∆𝑥 = 0.02 m (∆𝑥/ℎ2  ≅ 0.12) was used. Water depths and velocity distributions were measured 

on the centerline of the channel using acoustic displacement meters and phase-detection conductivity probes. 

Figure 4 shows the comparison of measured and calculated normalized water depth profiles. The black plots 

indicate the measured water level averaged over 10 seconds. And the red and blue plots are the measured 

average water level ± the standard deviation. The calculation shows only the average water surface profile 

indicated by the black solid line because the significant fluctuations are not seen in the calculation results. As 

shown in Figure 4, the water surface profiles calculated by Q3D-FEBS is good agreement with the measured 

data. Figure 5 is the comparison of measured and calculated velocity distributions. They are averaged over 45 

seconds, respectively. The calculation results roughly explain the measured velocity distributions including the 

(a) ∆𝑥 = 0.01 m (b) ∆𝑥 = 0.004 m
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backward velocities near the water surface due to the generation of the surface roller. The length of the surface 

roller estimated from Q3D-FEBS is 0.44m. It is slightly shorter than the length estimated from Eq. [20] (Hager 

1999) 0.56 m. 
𝐿𝑟

ℎ1

= −12 + 160 tanh (
𝐹1

20
) [20] 

Where, 𝐿𝑟: length of the surface roller, ℎ1 and 𝐹1: water depth and Fr of approach flow.

From the above results, Q3D-FEBS can well reproduce the water surface profile and velocity distributions 

of the breaking jump including the generation of the surface roller that is important for estimating the energy 

dissipation within the jump. 

Figure 4. Comparison of measured and calculated water depth profiles of a breaking jump. 

Figure 5. Comparison of measured and calculated velocity distributions of the breaking jump. 

4 Numerical simulation of the transitional process from an undular jump to a breaking jump 
Using the experimental conditions of Table 1 (Chacherea & Chanson 2010), the transitional process from 

an undular jump to a breaking jump is simulated by Q3D-FEBS. First, in order to generate an undular jump, a 
flow rate of 0.02 m3/s and a water depth of 0.04 m are given at the upstream end and a water depth of 0.054 m 
is given at the downstream end. After the stable undular jump is formed, Fr of the approach flow grows by 
increasing the flow rate to 0.0446 m3/s over 60 seconds while maintaining the water depth at the upstream end 
at 0.04 m. The water depth at the downstream end is increased to 0.172 m over 55 seconds in order to control 
the location of the jump. Figure 6 shows the simulation results. As shown in Figure 6(a), (b) and (c), the location 
of the jump moves downstream and the flow velocities near the water surface are decelerated at the crest of 
the first wave of the undular jump as Fr increases. When Fr exceeds 2.1, a flow separation occurs at the water 
surface and it attenuates the wave height as shown in Figure 6(d). After that, the location of the jump moves 

(a) 𝑥/ℎ𝑐=0.43 (b) 𝑥/ℎ𝑐=0.80 (c) 𝑥/ℎ𝑐=1.61 (d) 𝑥/ℎ𝑐=3.21
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upstream while expanding the backflow area near the water surface, and finally the breaking jump is formed as 
shown in Figure 6(e), (f). 

Figure 6. Simulation results of transitional process from an undular jump to a breaking jump by Q3D-FEBS. 

(a) 0 seconds after stable undular jump is formed.

Horizontal velocity(m/s) 

Horizontal velocity(m/s) 

Horizontal velocity(m/s) 

Horizontal velocity(m/s) 

Horizontal velocity(m/s) 

Longitudinal distance (m) 

Longitudinal distance (m) 

Longitudinal distance (m) 

Longitudinal distance (m) 

Longitudinal distance (m) 

Height (m) 

Height (m) 

Height (m) 

Height (m) 

Height (m) 

Fr=1.47, Q= 0.02 m3/s, ddw =0.054 
Fr: Froud number at 0.8 m point 

Q: Rate of flow at the upstream end 

ddw:Water depth at the downstream end 

Fr：1.85, Q = 0.0253 m3/s. ddw =0.082 m 

Fr：2.00, Q = 0.0274 m3/s, ddw =0.093 m 

Fr：2.10, Q = 0.0278 m3/s, ddw =0.095 m 

Fr：2.63, Q = 0.0352 m3/s, ddw =0.130 m 

Longitudinal distance (m) 

Height (m) 

Horizontal velocity(m/s) 
Fr：3.14, Q = 0.0446 m3/s, ddw =0.172 m 

(b) 13 seconds after stable undular jump is formed.

(c) 18 seconds after stable undular jump is formed.

(d) 19 seconds after stable undular jump is formed.

(e) 37 seconds after stable undular jump is formed.

(f) 37 seconds after stable undular jump is formed.
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It was found that Q3D-FEBS can calculate the transitional process from an undular jump to a breaking 
jump in the framework of the depth-integral model by analyzing the flow separation at the water surface using 
the flow equations on boundary surfaces. 

5 CONCLUSIONS 
This paper proposes a new non-hydrostatic quasi three-dimensional model (Q3D-FEBS) that introduces 

the flow equations on boundary surfaces (a free surface and a bottom surface). Q3D-FEBS is applied to the 
previous experiments of undular and breaking jumps and a numerical simulation for the transitional process 
between the jumps is performed. These results show that Q3D-FEBS can predict the flows in both undular and 
breaking jumps including the transitional process between the jumps in the framework of the depth-integral 
model by introducing the flow equations on boundary surfaces. 
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