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Abstract   

In order to compute local scouring around structure together with the computation of large-

scale flow phenomena, we have developed the Bottom Velocity Computation (BVC) method, 

in which depth-averaged horizontal vorticity equation and water surface velocity equation are 

solved with shallow water equations to evaluate bottom velocity field and vertical velocity 

distribution. The previous BVC method by the authors has been based on the shallow water 

assumption, but the validity of the shallow water assumption for local flow structure has not 

been clarified. This paper presents applicable ranges of 2D, 3D and quasi-3D numerical 

model by the ratio of representative water depth to representative horizontal scale. Then, the 

general BVC method based on a depth-integrated model without the shallow water 

assumption is developed. The method is applied to flow field around a cylinder on flat rough 

bed measured by Roulund et al.(2005).  

 

1. Introduction  

Local scouring around structure is one of the most important issues in the hydraulic 

engineering field. There are many researches on the local scouring. Flow fields around 

structures inducing local scouring are so complex that many empirical formulae are proposed 

based on experimental results (e.g., Hoffmans & Verheij, 1997). Recently, we can simulate 

complex turbulence flow and local scouring by 3D turbulence model (e.g., Roulund et al., 

2005). On the other hand, local scours around river structures during flood are affected by the 

larger scale phenomena of flood flows and bed variations, such as discharge hydrograph, 

planner shapes of rivers and sand bars. So, to provide countermeasure against local scour 

around river structures, it is to solve simultaneously not only local 3D flow around structures 

but also large scale phenomena of flood flows. However, applications of the 3D model are 

still limited to small scale phenomena such as bed variation in experimental channels, because 

of large computational time, many memories, and a lot of computational task. 

 

Advanced depth integrated model, improved 2D model, is one of the effective method to 

compute local scouring around structures with large-scale flow phenomena. Advanced depth 

integrated models to compute bed variation include secondary flow model (e.g. Nishimoto et 

al., 1992) and a quasi-3D model (e.g. Fukuoka et al., 1992), in which vertical velocity 

distributions are computed. Recently, we have developed a new quasi-3D method, the Bottom 

Velocity Computation (BVC) method, in which depth-averaged horizontal vorticity and water 
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surface velocity equations are computed with shallow water equations to evaluate bottom 

velocity field and vertical velocity distribution (Uchida & Fukuoka, 2009, 2010, 2011). The 

previous BVC method has been based on the shallow water assumption, in which 

representative water depth h0 is much smaller than representative horizontal scale of the 

objective phenomena L0 (shallowness parameter: s=h0/L0<<1). However, the validity of the 

assumption has not been clarified for small scale phenomena, such as local flows around 

structures.  

 

This paper has a twofold purpose. One is to clarify the suitable computational method for a 

target phenomenon. The other is to develop the general BVC method based on a depth-

integrated model without the shallow water assumption and to verify the applicability of the 

method to flow field around a cylinder measured by Roulund et al.(2005).  

 

2. Previous Bottom Velocity Computational Method with Shallow Water Assumption 

BVC method has been developed based on equation (1), which is derived by depth integrating 

vorticity.  
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Here, ubi: bottom velocity, usi: water surface velocity, j: depth-averaged vorticity, h:water 

depth, ws, wb: vertical velocity on water surface and bottom, respectively, zs: water surface 

level, zb: bottom level. For the previous method (Uchida & Fukuoka, 2009, 2010, 2011), 

bottom velocity is evaluated by water surface velocity and depth-averaged vorticity, 

neglecting the last three terms in equation (1) by the shallow water assumption, in which the 

ratio of representative water depth h0 to representative horizontal scale L0 is very small 

s=h0/L0<<1 (s: shallowness parameter).  Water surface velocity and depth-averaged vorticity 

are calculated by equation (7) and (10), respectively, together with shallow water equations of 

continuity equation, momentum equation (2) and the turbulence energy transport equation. 

And hydrostatic pressure distribution, which is a kind of the shallow water assumption, is 

assumed to compute depth averaged velocity and water surface velocity equations. Governing 

equations of the BVC method are set by adding cubic vertical velocity equation (2). 

    iiii Uuuu  2323 3411212                                  (2) 

Here, Ui: depth averaged velocity, ui: usi ubi, ui: usi Ui. 

 

3. Applicability Ranges and Limitations of Calculation Models by Shallowness 

3.1 Depth averaged velocity field 

To clarify the applicability ranges and limitations of 2D and 3D models for depth averaged 

velocity fields, the magnitude of each terms in depth averaged velocity equation are discussed 

by shallowness parameter in this section. Equations for horizontal depth averaged velocity are 

derived by depth-integrating momentum equations in horizontal directions without the 

assumption of hydrostatic pressure distribution. 
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Here, bi: bed shear stress, dp: pressure deviation from hysrostatic pressure distribution 

(p=g(zsz)+dp), dp0: depth averaged dp, dpb: dp on bottom, ij :horizontal shear stress due to 

turbulence ijt Sv and vertical velocity distribution '' ji uu ,  Sij: depth averaged strain velocity, 

'iu : velocity deviation from depth averaged velocity.  

 

Expressing representative horizontal scale L0 , water depth (vertical scale) h0 and velocity U0, 

physical quantities in equation (3) are non-dimensionalized as 
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Here, *=u*0/U0, u*0: representative shear velocity, 0=0.1. vt is evaluated by zero-equation 

model, vt=u*h/6. '' ji uu  is evaluated by vertical velocity distribution of quadratic curve 

(Uchida & Fukuoka, 2009). By substituting equation (4) into equation (3), equation (5) is 

derived. 
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Here, Fz=gravity terms, Fc: convection terms, Fh, Fdp: pressure terms of hydrostatic, non-

hydrostatic component, Ft, Fc: horizontal shear stress term due to turbulence, vertical 

velocity distribution, Fr
2
=U0

2
/gh0.  

 
Figure 1 shows magnitude of each term in equation (5) by shallowness parameter s for *=0.1, 

setting the maximum magnitude for s to 1 in the vertical axis. For very shallow water flow 

s<10
-3

, depth averaged velocity field is determined only by the gravity and the bed shear 

stress terms without influence of the convection terms. In this range, we can apply formulae 

for uniform flows such as the Chezy formula or the Mannig formula to evaluate depth 

averaged velocity. The convection term is dominant for 10
-3 

< s < 1, in which a depth integrated 

model is useful. However, the non-hydrostatic terms become larger from s=0.1. So, for 0.1
 
< s 

< 1, a non-hydrostatic depth integrated model (quasi-3D model) is required, while 2D model is 

useful for 10
-3 

< s < 0.1. A 3D model is required for small scale phenomena of 1
 
< s, in which 

the convection terms become smaller with increasing s. The horizontal shear stress terms due 
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Figure 1: Magnitude of each term in depth averaged velocity equation 
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to turbulence and vertical velocity distribution are small regardless of shallowness parameter, 

because the magnitudes of these terms are evaluated for uniform flow condition in this study.  

 

3.2 Bottom velocity field 

A calculation method of bottom velocity has an important role for a bed variation analysis. A 

non-dimensional equation of (1) is 
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Here, Fw: spatial difference terms in vertical velocity of equation (1).  

 

The equation concerning a water surface velocity is derived from momentum equation in the 

very thin layer zs under the water surface (Uchida & Fukuoka, 2010, 2011). 
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Here, )/)(/1(' zdpgg   , Psi :shear stress acting on undersurface of zs, usei = Ui + (ui 

ui), ui: usi ubi, ui: usi Ui. According to equation (4), non-dimensional equation for 

water surface is given by  
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Here, Fsc: convection terms, Fs: shear stress terms due to non-equilibrium vertical velocity 

distribution, Fsr: curvature terms of water surface.  

 

A depth averaged horizontal vorticity equation is derived from depth integrated horizontal 

vorticity equation (Uchida & Fukuoka, 2009, 2010, 2011). 
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The depth averaged vorticity equation (10) is non-dimentionalized as 
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Here, F1, F2 and F3 are vorticity transport terms due to depth-averaged, vertical velocity 

distribution and turbulent diffusion.  

 

Substitution of equation (9) and (11) into equation (6) leads to equation (12) for bottom 

velocity pattern. 
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Figure 2 shows magnitude of each term in the bottom velocity equation (12) for *=0.1. For 

s<10
-2

, because bottom velocity field is determined only by depth averaged velocity field, a 

2D model is applicable to evaluate bottom velocity for bed variation analysis. On the other 

hand, for 10
-2 

< s, the convection terms of water surface velocity and depth averaged horizontal 

vorticity become larger with increasing s. So, one cannot apply a 2D model to bottom velocity 

analyses for 10
-2 

< s, ignoring variations in vertical velocity distribution. The upper limit s=10
-2

 

of the applicable range of a 2D model in Figure 2 is smaller than that of Figure 1 (s=10
-1

). The 

results indicate that a quasi-3D model plays a more significant role in bed variation analysis. 

For 0.1
 
< s, because the magnitude of spatial difference terms in vertical velocity becomes 

larger with increasing s, the shallow water assumption is unsuitable. For 1
 
< s , the depth 

averaged velocity has little influence in bottom velocity field any more.  

 
The above results of Figure 1 and 2 indicate that a depth integrated model without assumption 

of shallow water flow such as non-hydrostatic pressure distribution and spatial difference in 

vertical velocity is required for 0.1 < s < 1.  

 

4. General Bottom Velocity Computation Method without Shallow Water Assumption 

4.1 Governing Equation for Depth Averaged Vertical Velocity Equation 

To calculate bottom velocity by equation (1) without the assumption of a shallow water flow 

condition, a Poisson equation for time variation in depth integrated vertical velocity is derived 

as follows. Unknown quantities in the BVC method are computed by time advance method. 

Unknown quantities at n+1 step are required to satisfy 
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Here, predicted velocity difference between water surface and bottom velocity ui 

p
 by 

previous depth integrated vertical velocity Wh
n
 at n step is introduced: 
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By subtracting equation (14) from equation (13),  we have 

Figure 2: Magnitude of each term in bottom velocity equation 
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On the other hand, corrected vertical velocity (Wh)=(Wh) 
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And the vertical velocity distribution is corrected by (ui) : 
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By substituting equation (17) into equation (16) and making depth-integration, corrected 

vertical velocity (Wh) is obtained as 
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Finally, the Poisson equation for vertical velocity variation in time is derived from 

substitution of equation (15) into equation (18). 
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4.2 Governing Equation for Non-Hydrostatic Pressure Distribution 

Depth integrated vertical momentum equation is used to determine non-hydrostatic bottom 

pressure distributions. 

j

zj

j

b

bj

b

j

j

x

h

x

zdp

x

hWU

t

hW


















 



                                  (20) 

For simplicity, the unsteady and horizontal shear stress terms are neglected and the linear 

vertical pressure distribution is assumed: 

bdpdp                                                             (21) 

 

5. Application to Flow Fields around a Cylinder and Discussion 

The general BVC method without the shallow water assumption is applied to a flow around a 

cylinder mounted on fixed rough bed, which was measured by Roulund et al.(2005). Table 1 

shows the experimental conditions and Figure 3 shows computational gird around a cylinder 

made of 1/40 of the diameter. Experimental discharge is given at upstream end and water 

depth is given at downstream end. 
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Table 1:  experimental conditions 

by Roulund et al.(2005) 
 

Diameter D (m) 0.536 

Depth h0 (m) 0.54 

Cannel width B (m) 4.0 

Fr number 0.14 

 

Figure 3:  Computational grid 
(m) 
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Figure 4 shows computed results of (a) depth-averaged vertical velocity, (b) non-hydrostatic 

bottom pressure and (c) bottom velocity distributions. Downward and reverse bottom flows 

are induced with low pressure in front of a cylinder and high pressure in both sides of a 

cylinder. Those are typical characteristics of a horse shoe vortex. Figure 5 shows comparison 

between experimental and calculational results by the general BVC method for velocity 

distributions on longitudinal cross-sections along the center line of a cylinder. It is 

demonstrated that the method can simulate 3D flow field in front of a structure despite of the 

depth integrated model. 
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Figure 5:  Velocity distribution on the central vertical-section in front of a cylinder. 

(c) Bottom velocity 

Figure 4:  Calculated results by the general BVC method to experimental condition by Roulund et 
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6. Conclusions 

Applicability of various computational methods for a target phenomenon is discussed based 

on momentum equations. It is clarified that a depth integrated model without the assumption 

of shallow water flow is required to calculate both of depth averaged and bottom velocity 

flow fields for 0.1 < s < 1. 

 

To develop the general bottom velocity computation (BVC) method without shallow water 

assumptions, the Poisson equation for vertical velocity variation in time is derived. And 

computation method for non-hydrostatic pressure distribution by using the depth-integrating 

vertical momentum equation is presented. 

 

The general BVC method is applied to flow field around a cylinder mounted on the fixed and 

rough bed. It is demonstrated that the general BVC method can calculate 3D flow structures 

around a cylinder through the comparison with the experimental results of Roulund et al. 

(2005).  
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