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While numerous steady compound channel flow studies have been conducted, unsteady 

compound channel flow has received relatively little attention. This paper presents a 

comparison between 2-dimensional unsteady flow numerical model and experimental results 

for flow variables in a compound meandering channel. Extensive flood flow experimental 

data obtained from a compound meandering channel experiments in the Hydraulic Laboratory, 

Hiroshima University is used for comparison with the numerical model. The numerical 

method is based on a finite volume discretization on a staggered grid with upwind scheme in 

flux, it handles drying and wetting process for a flood plain, has the ability to handle complex 

geometry and discontinuities, which are the main requirements for modeling compound 

channel flows. Comparison between measured data and model simulations show generally 

good agreement. This shows how useful the model can be in prediction of flood propagation 

in channels. 
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1. INTRODUCTION 

 

Various laboratory and numerical investigations were performed to study flow phenomenon 

in open channels, in most of these studies, steady flow investigations have been done (ASCE 

T.C, 1996; Fukuoka et. al, 1998; Sofialidis and Prinos, 1998; Zhao et. al 1994). Zhao et. al, 

1994 observed that existing 2-dimensional numerical models have limited range of 

applicability in which they were developed. This results in uncertainty of computational 

results when the 2-dimensional model is applied outside its basic simulation features. From 

this viewpoint, water resources engineers, river and hydraulic engineers still demand 

reasonably reliable and accurate 2-dimensional dynamic models for practical engineering 

planning and designs. 

 

Unsteady flow in a multistage channel involves a stage in which the flow overtops the bank 

and inundates the flood plain so that part of the flow is carried by the flood plains. The 

relative depth varies from zero at bankful to some value depending on the discharge 

hydrograph. Low relative depths are associated with large velocity difference between main 

channel and flood plain that results to lateral momentum transfer across the interface between 

main channel and flood plain (Wormleaton et. al, 1990). To quantify this lateral flow 

exchange in one-dimensional models, weir equations are normally used (Cunge et. al, 1980; 

Kun-Yeun et. al, 1998), or apparent shear stress computation approach (Fukuoka et. al, 1990; 

Wormleaton et. al, 1990). However, these approaches have some uncertainties on the choice 

of weir discharge coefficients (Shome et. al, 1990) and determination of mixing coefficients 

in the apparent shear stress approach.  

 

This paper presents a comparison between unsteady flow laboratory experimental results and 

2-dimensional numerical simulations. It describes an improved numerical model, which was 
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developed earlier by Nagata et. al, 1999. The original Nagata’s approach could not simulate 

well laboratory unsteady compound meandering channel flow results. Two major items of the 

method were modified; the way of implementation of turbulent shear stress (instead of the 

semi-empirical Reynolds stress approach of Nezu and Nakagawa, 1993), boundary conditions 

and initial conditions. For upstream and downstream boundaries zero-order extrapolation 

method was changed to method of characteristic that behaves well according to the direction 

of waves (Hirsch, 1998). This model is based on finite volume on a staggered grid with 

upwind scheme in flux. Steady and unsteady flows can be simulated; different flow regimes 

such as sub-critical, supercritical, flow discontinuities can be handled. Comparison between 

measured data (Fukuoka et. al, 2000) and model simulations show good agreement.  

 

2. MODEL DESCRIPTION 

 

2.1 Governing Equations 

Two-dimensional depth integrated momentum equations were transformed into natural 

coordinate system. In addition, by mathematical manipulation using metrics, equation [1a]-

[1c] below with contravariant fluxes was obtained. 
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Where, t is time, h and z (=h+zb) are water depth and water level elevation respectively, zb is 

the ground level elevation, u and v are depth averaged velocities in x and y directions 

respectively, g is the acceleration due to gravity. The turbulent shear stress terms in x, x-y and 

y directions are evaluated as in equation [2a] below. The depth averaged turbulent eddy 

viscosity coefficient, εεεε was evaluated by using the commonly used parabolic eddy viscosity 

formula in [2a] below. This approach has been adopted due to computational ease of 

application and its contribution to many practical applications. κκκκ is the Von Karman constant 

(=0.41) and ∗u  is the shear velocity. 
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Expressions for boundary shear stress and Manning’s roughness coefficient are shown in [2b]. 

ks is the equivalent roughness. The metrics and contravariant velocities (U, V), discharge (Q
ξ
, 

Q
η
) and contravariant boundary shear stress terms (τb

ξ
, τb

η
) are defined as shown in [2c] 

below. 
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2.2 Method of solution 

Equation [1a] to [1c] above were solved by an explicit numerical scheme that is second order 

accurate in time and first order accurate in space. The numerical scheme is an improved 

version Nagata’s approach (1999) which uses Adam’s Bashforth method (Kreyzig, 1999) and 

upwind scheme in flux for time and space advancement respectively. Finite volume 

discretization is employed on a staggered grid arrangement for velocity components in order 

to avoid pressure discontinuities at the interface. The grid used was non-orthogonal. On the 

open boundaries (upstream and downstream boundaries), measured discharge hydrograph and 

measured water depth hydrograph was given respectively. Additionally, on the upstream and 

downstream boundaries, a unidirectional flow characteristic boundary condition was 

implemented to compute velocities. For the solid wall boundaries, a slip condition was 

implemented and no flux crossing through the wall. Wetting and drying was considered by 

predefining a minimum water depth (hst = 0.001m). When the water depth in the cell under 

consideration and its surrounding cells was less than hst then fluxes in that cell during that 

time step were assigned a value of zero, then computation advanced to next time step. 

Stability requirement was not explicitly accounted for in the numerical model, time step was 

chosen sufficiently small and constant throughout the computation time based on trials. 

 

2.3 Model Application 

Numerical simulation was done on experimental data (Fukuoka et. al, 2000) for the 

compound meandering channel shown in Figure 1. The experimental channel was 21.5m long, 

0.045m-bankfull depth, and 0.5m wide sine generated main channel with each wavelength 
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4.1m. Total width of the channel including flood plains was 2.2m and channel slope was 

1/500. Measurement points were located at P2-01, P2-07, P3-01, P3-07, P4-01, P4-07, P5-01, 

P5-07 and P5-13 as indicated in Figure 1. Two sets of experimental runs, Exp.1 and Exp.2 in 

the same channel conditions were used to verify the simulation results. Measured upstream 

discharge hydrograph and downstream water depth hydrograph for the respective Exp1 and 

Exp2, shown in Figure 2 were used as open boundary input conditions in the numerical 

simulations. 

 

3.  RESULTS AND DISCUSSION 

 

3.1 Effect of roughness 

In these numerical simulations, water depth on the upstream boundary condition was 

computed by uniform flow Manning’s formula using input discharge hydrograph. The stream-

wise velocities for upstream boundary computed by 1-dimensional method of characteristic, 

required accurate Manning’s roughness coefficient distribution with time. Also, in order to 

obtain accurate upstream boundary water depth from discharge, proper Manning’s roughness 

distribution with time was required. Composite temporal Manning’s roughness coefficient for 

the compound section at the upstream boundary was calculated from measured water surface 

profiles using one-dimensional non-uniform flow equation. These distributions with time are 

shown in Figure 4 for Exp.1 and Exp.2. 

3.2 Velocity –hydrographs 
Computed velocity hydrographs presented in Figure3 shows discrepancies when relative 
depth is small (210s < t < 600s and 3300s < t < 3800s). However, the velocity hydrograph of 
large relative depth coincide well. Three reasons under investigation in this study account for 
this discrepancy at small relative depths. First, during transition from in-bank flow to over-
bank flow, large variations of roughness coefficient account for this discrepancy. In the 
previous steady flow studies (Myers and Brennan, 1990) roughness variability with relative 
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Figure 3 Comparison between measured and simulated velocity hydrographs for Exp1. 

Figure 4 Temporal distribution of upstream Input Manning’s roughness coefficient 
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depth was observed. Second, order 1 upwind schemes are not sufficiently accurate in most 
practical purposes (Hirsch, 1998). Third, explanation is the depth averaged turbulent eddy 
viscosity coefficient is inaccurate at the transition from in-bank flow to over-bank flow near 
the main channel and flood plain interface. This is because of three-dimensional nature of 
flow in compound channels.  
 

3.3 Water depth-hydrographs 
The comparison of experimental and simulated water depth hydrograph results at centerline of 
the main channel are indicated in Figure 5. Since agreement between the comparison is 
generally good, the model might be used for prediction of flood wave height, as it propagates 
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(b) Comparison between measured and simulated water depth hydrograph for Exp2 
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Figure 5 Comparison between measured and simulated water depth hydrograph 

Figure 6 Temporal variation of boundary shear stress and turbulent shear stress in x-x 

direction (BU2A) at cross section P3-07 
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in channels. However, for application of the model to natural rivers further investigation is 
needed. 
 
3.4 Shear stress-hydrographs 

From Figure 6, it is clear that maximum values of boundary shear and turbulent shear stress in 

x-x direction are located around the interface between main channel and flood plain. This 

occurs when the flow is above bankful (210s < t < 3600s). This shows the interaction between 

main channel and flood plain when the flow inundates the flood plain. The unsymmetrical 

pattern of the transverse distribution of the shear stresses arises due to meander channel plan 

form. 
  
4. CONCLUSION 
 
Comparison between the measured and the simulated water depth hydrographs showed good 
agreements, this demonstrate how useful the model can be for flood prediction in channels. 
This unsteady flow study shows additional temporal change of those hydraulic variables and 
parameters need to be considered during flood flow. The accuracy of upstream and 
downstream input data is very important for unsteady flow computations.   
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