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ABSTRACT 

In this paper, for estimating local scouring around a pier, the Bottom Velocity Computation (BVC) 
method is developed based on the depth integrated model. The governing equations of the BVC 
method are composed of depth-integrated horizontal vorticity and water surface velocity equations in 
addition to shallow water equations and a depth averaged turbulence energy transport equation. To 
compute bed variation, non-equilibrium bed load equation is proposed. The adequacy of the model is 
discussed through the comparisons with the laboratory experimental results for flows and bed 
variations around a pier. The pier scour is induced mainly by the horseshoe vortex. The horseshoe 
vortex with radial diverging bed-surface flow from the top of the pier is produced by the extension and 
rotation of the horizontal vortex filament in approaching flow. On the other hand, bed-surface flow 
converges and deposits sediment downstream of the pier. This paper shows that these important flow 
characteristics around a pier are reproduced by the BVC method. And computed scour hole around a 
pier is similar to that of the measurement. The above indicates the BVC method with the bed variation 
analysis by non-equilibrium sediment transport model is useful to simulate the severe local scour in 
front of structures. 

1. INTRODUCTION 

River engineers are faced with urgent task of checking the safety degree against floods, because the 
safety level of rivers in Japan is predicted to be reduced by the global warming. A numerical model for 
bed variations in rivers during floods is required to assess the risk of river structures due to local 
scouring.  

Local scour around a pier has attracted a lot of interest from engineers and researchers for a long time. 
Recently, the horseshoe vortex and local scour around a pier have been calculated successfully by full 
3D turbulence models coupled with sediment transport models (Olsen & Melaaen, 1993; Olsen & 
Kjellesvig, 1998; Nagata et al., 2005; Roulund et al., 2005). However, full 3D turbulence models are 
still limited for application to floods and bed variations in natural rivers. So, a practical and reliable 
model for flows and bed variations during floods are highly required. 

Depth integrated models have been used for computations of flood flows and bed variations in rivers 
(Fukuoka, 2005; Wu, 2008). A 2D model based on the shallow water equations does not give 
sufficient accuracy in calculating local scouring around outer bank in curved channels, contracting 
sections, river confluences, and river structures. For such conditions, bottom velocity (velocity near 
bed surface) which determines sediment motions is different from that for uniform flow, as shown in 
Figure 1. For this reason, many improved depth integrated models have been developed, especially 
for a helical flow in a curved or meandering channel. Those include full-developed secondary flow 
model without considering effects of secondary flow on vertical distribution of stream-wise velocity (e.g. 
Engelund, F., 1974; Nishimoto et al., 1992), refined secondary flow models with non-equilibrium (e.g. 
Ikeda & Nishimura, 1986; Finnie et al., 1999) and mean flow redistribution effects (e.g. Blanckaert & 
de Vriend, 2003). As more versatile method for evaluating vertical velocity distributions, a quasi-3D 
model, in which equations for vertical velocity distribution are computed, has been developed (e.g. 
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Ishikawa et al., 1986; Fukuoka et al., 1992; Jin & Steffler, 1993; Yeh & Kennedy, 1993). The above 
mentioned models are categorized in the efficiently-simplified 3D model with the assumption of 
hydrostatic pressure distribution for each objective of the computation, as shown in Figure 2. However, 
it is known that these models are still-inadequate for local scouring induced by complex flows around a 
pier, because they cannot consider effects of flows due to non-hydrostatic pressure distribution on 
vertical velocity distributions. 

Depth averaged flow path

Secondary flow
Bed surface flow path

Sediment path 

 

Figure 1 Helical flow due to the centrifugal force in curved channels 
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Figure 2 Categorization of depth integrated models by derivations 

 

Ghamry & Steffler (2002) proposed quasi-3D model with non-hydrostatic pressure distribution based 
on moment equations. However, the model capability for complex flow fields around structures is 
remain incompletely understood. Recently, we had developed a new depth integrated model without 
the assumption of the vertical pressure distribution, in which shallow water equations and horizontal 
vorticity equations are solved to compute vertical velocity distributions. It was demonstrated that the 
model can simulate complex flow fields induced by a tributary entry (Uchida & Fukuoka, 2009). In this 
paper, for estimating local scouring around a pier, the Bottom Velocity Computation (BVC) method is 
developed based on the depth integrated model (Uchida & Fukuoka, 2009). To compute bed variation, 
non-equilibrium bed load equation is proposed and combined with the BVC method. And the 
adequacy of the model is discussed through the comparisons with the laboratory experimental results 
for flows and bed variations around a pier. 
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2. BOTTOM VELOCITY COMPUTATION METHOD 

2.1 Basic concept 

Figure 3 shows Bottom Velocity Computation (BVC) method. We define the bottom zb as the surface 

on the shin vortex layer zb on the bed, as shown in Figure 3. The velocity on the bottom ubx is 

computed by the BVC method. With Stokes' theorem, velocity difference ux between water surface usx 

and bottom surface ubx is represented by depth-integrated vorticity yh and spatial difference of depth-
integrated vertical velocity Wh. The non-dimensional form is : 
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Figure 3 The concept of Bottom Velocity Computation Method 
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where, *
y=yh/U0, h*=h/h0, x*=x/L0, u*

x=ux/U0, W*=W/W0=Wh0/U0L0, h0: representative water depth        
(vertical scale of flow), L0: horizontal scale of flow, U0: representative horizontal velocity, W0: 
representative vertical velocity. For shallow water flow, the second term is neglected. That means, for 
many flow fields in river, we can evaluate the bottom velocity ubx by water surface velocity usx and 

depth-integrated horizontal vorticity yh.  

The governing equations of the BVC method are composed of depth-integrated horizontal vorticity and 
water surface velocity equations in addition to shallow water equations and a depth averaged 
turbulence energy transport equation. The important advantage of the BVC method is the ability to 
compute bottom velocity distribution of the complex flow field around the river structure due to non-
hydrostatic pressure distribution. The local scouring around the structure is calculated by using the 
bottom velocity with continuity equation for sediment and non-equilibrium sediment transport 
equations. 

2.2 Vertical velocity distribution and governing equations 

 Vertical velocity distribution and bed shear stress 

Velocity distributions above very thin vortex layer on bed are computed in the BVC method. The 
Polynomial equation of vertical velocity distribution is assumed. Then, by using depth averaged 

velocity Ui, velocity difference ui between water surface and bed surface, water surface velocity usi, 
and no vertical velocity gradients on water surface, the vertical velocity distribution of a cubic curve is 
obtained: 

   2323 3411212   iiii uuUu                                            (2) 
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where, ui usi Ui, ui usi ubi, =zszh, zs: water level, h: water depth. The uniform velocity 

distribution is derived by equilibrium water surface velocity useiUiuiui2 and equilibrium velocity 

difference uei.  For the equilibrium condition, shear stress zi is written as: 





h

uv

dz

du
v ii

bizi

2
                                                          (3) 

where, bi i direction bed shear stress defined as: 

bbibibi uucUUC
22

0                                                          (4) 

where, U2 UiUi, ub
2 ubiubi. ui for the equilibrium condition is given by: 

v

h
uuc

v

h
UUCu bbibii

22

22

0                                                      (5) 

With the depth averaged eddy-viscosity vu*h, 6, the relationship between cb and C0 is described 
as: 

 /21/ 00 CCcb                                                            (6) 

C0 is described by manning roughness coefficient, C0
2gn2/h1/3. 

 Water surface velocity 

The equations for the water surface velocities are derived by assuming very thin layer just below water 

surface zs (see Figure 3), neglecting water surface curvature: 
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where, Psi, shearstress acting on zs, is represented by Equation (8).   
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where, Cps=3.   

 Depth averaged horizontal velocity and water depth 

Equations for water depth h and depth averaged velocity vectors Ui (shallow water equations) with 

occupancy ratio of water described as:  
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where, swi =shear stress acting on side wall, Rsw=hydraulic radius of side wall. ij is horizontal shear 
stress: 

kuuS ijjiijtij   3/2''2                                                   (11) 
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where, k=depth averaged turbulence energy, Sij=strain ratio tensor of depth averaged velocity vectors 
Ui. The second term is produced by vertical velocity distribution, which is defined as: 
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k is computed by Eq.(13), which is known as one-equation model: 
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where, vCk
2, Ck

3/2, C0.09, C=1.7/h (Nadaoka & Yagi, 1998). With using vertical velocity 
distribution (2), the production term Pk is derived as: 
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where, S2=SijSij, S2=SijSij, S2=SijSij, u2=uiui, u2=uiui, Sijstrain ratio tensor of ui, Sijstrain 

ratio tensor of ui. Ch9C
4C

3, vte/uhvte: equilibrium depth averaged kinematic eddy 
viscosity. The model is equivalent of zero-equation model for the equilibrium condition of k. And in this 
model, the last term of equation (11) is eliminated, because the normal stress is assumed as 
hydrostatic pressure distribution. 

 Depth integrated horizontal vorticity equations 

The velocity difference ui is computed by using depth integrated vorticity for shallow water conditions, 
as discussed above:  

hu jiji  3                                                                   (15) 

where, ij
3permutation symbol (1232131,113223=0), idepth averaged vorticity vectors. The 

equation for i is described by: 
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where, 

  bbissii uuER  , 

j

it
jiijjiijij

x

v
uuUUD











 '''' , 








 


525

6
''

jj

ijiji

uu
uu


 ,   hu jiji /3                                                                                                     

2.3 Bottom vorticity and production of vorticity from vortex layer 

The production term Pi of the vorticity equation (16) represents net vorticity flux from the thin vortex 

layer on bed. For flat bed condition, the flux is induced by the turbulent mixing (Pbi). In addition, the 

flux is supplied by the separation downstream of the abrupt change of bed slope (Psi), as shown in 
Figure 3. The production term is defined as the sum: 

isibi
PPP                                                               (17) 
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Pbi is approximated by the product of the kinematic eddy viscosity and the vertical gradient of 
vorticity near the bed: 

h
vCP bibei

tbpib





                                                     (18) 

where, Cp3, vtb: equivalent depth averaged value of bottom kinematic eddy viscosity, 

vtbmax2h2b, 
2h2be, vt), b

2bibi, be
2bei, vt: depth averaged kinematic eddy viscosity, bi: 

bottom vorticity, bei: equilibrium bottom vorticity for bottom velocity ubi, beiij3cbubih, b: bottom 
vorticity. The bottom vorticity is defined by Equation (19), minimizing the production term between 

bibci andbibqi: 
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where, bcibeibci, bqibeibqi, bciuiui)h,  bqii. 

The flux supplied by the separation Psi is represented by the product of the bottom layer integrated 
vorticity and the bottom layer averaged velocity: 
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where, x, y: computational grid size of x, y direction, zx=zxxx, zy=zyyy, zxx, zyy: second order 
differential of bed level computational by x, y. 

2.4 Numerical schemes 

The explicit conservative CIP scheme for shallow water flows (Uchida, 2006) is adopted for 
computations of water depth and depth averaged velocity vectors. In the model, to directly capture the 
effect of distributed parameters in the Cartesian coordinate system, each control volume ij has three 
kinds of variables, i.e., the value at the intersection of the grid (Point Value), the averaged value along 
the side of the grid (Line-averaged Value) and the averaged value over the grid (Area-averaged 
Value). Those values are computed all together based on CIP-CSL scheme (Nakamura et al., 2001). 
All the variables in the governing equations are set on the same location. The utilization of multi-
valuables on a computational cell enables us to capture complex geometry even on the Cartesian 
coordinate system. The above scheme is not adopted for computations of the equations for water 
surface velocity, the depth averaged turbulence energy and vorticity. Those averaged value of the 
computational cell are computed by traditional scheme.  

3. COMPUTATIONAL METHOD FOR BED VARIATION 

3.1 Continuity equation and momentum equation for sediment 

The time variation of bed topography is computed by the continuity equation for sediment: 
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where, B: sediment porosity, qBi: bedload sediment transport rate. The equation for the bedload rate is 
derived by momentum equation for sediment: 
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where, uBi: sediment particle velocity of bedload, PuBPi: gain momentum from bed material, DuBDi: loss 

momentum by particle deposition, mksgcoss+1+CM, CM : coefficient of added mass, k: dynamic 

friction coefficient of sediment, s: specific gravity of sediment in water,  : maximum grade of bed, 

hBqBuB, qBqBiqBi, uBuBiuBi,i, ei: i component of unit vector of sediment movement and its equilibrium 

value. uB, uBehB are given by reference to Ashida & Michiue (1974).  

The first term in right side for momentum exchange between bed load and bed materials is described 
as: 

LuqLuqDuPu BiBeBeiBeBDiBPi //                                            (23) 

where, qBe: equilibrium sediment transport rate of bed load, L, Le: average particle step length and that 
for equilibrium condition. The step length formulae are assumed by reference to Phillips & Sutherland 
(1989). The second term in right side is derived by forces acting on sediment particles. 

3.2 Bed tractive force and equilibrium bed load 

The total resistance of bed is evaluated as bed shear stress of equation (3) in the present model. The 
total resistance of bed with sand waves is divided into form drag acting on sand waves and surface 
resistance acting on sediment particles. The latter is considered as bed tractive force which induces 
bed load (Ashida & Michiue, 1974). Generally, the surface resistance is evaluated by: 

2)( bbsbse uc                                                           (23) 

where, 1/cbsr1lnzbksr8.5, ksequivalent roughness. However, the above is assumed as a 
uniform flow condition and inadvisable in flow conditions around structures with local scouring. In this 
study, the surface resistance is evaluated by the Boussinesq approximation near bed to evaluate non-
equilibrium flow conditions: 
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where, cvvtb: bottom kinematic eddy viscosity, vte: equilibrium depth averaged kinematic eddy 

viscosityThe bed tractive force and the critical shear stress of sediment particle on bed slope are 
given by Fukuoka & Yamasaka (1983). The equilibrium bed load is given by Ashida & Michiue (1974). 
And where the local bed slope exceeds the repose angle, the sand slide occurs in the model. 

4. APPLICATION TO LOCAL SCOURING AROUND A PIER 

4.1 Experimental and computational conditions 

The present model is applied to the experiment for local scour around a pier by Fukuoka et al. (1997) 
to validate the model performance. Experiments were conducted in the channel with 27.5 m long, 1.5 
m width, 1/600 initial bed slope and uniform sand material d=0.80 mm. A pier with 0.20 m diameter 
was installed at the center of the cross section in the channel. The experimental discharge was 0.066 
m

3
/s, and sediment supply rate at the upstream end was 8.8 cm

3
/s. The average water depth h0 and 

Fr number of the experiment were h0=11.6 cm and Fr=0.4, respectively. 

The computational domain includes the overall channel width from 5m upstream to 6m downstream of 
the pier. From about 2.5m upstream to about 4m downstream of the pier, uniform grid of 
dx=dy=0.025m is used, as shown in Figure 4. The experimental discharge and sediment supply rate 
are given at the upstream end of the domain and the fixed water level is given at the downstream end. 
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The downstream end water level and manning roughness n of channel bed are decided to adjust 
longitudinal water surface profiles between computation and measurement. And the equivalent 

roughness for bed tractive force is given by ksd. The initial flow condition of the bed variation 
analysis is given by computation results for fixed flat bed with z=0 at the pier center section with initial 
bed slope 1/600. 
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4.2 Computed results and discussion 

Figure 5 shows computed temporally averaged bottom velocity fields on initial flat bed and computed 
local scour after 30 minutes. Figure 6 shows the measured bottom velocity field around the pier for the 
equilibrium condition (after 65 hours). In the experimental results, it is fined that radial bottom flows 
from the top of the pier induces local scour and the bottom flow runs around to the back of the pier 
with sediment deposition. These important characteristics of the bottom velocity around the pier are 
shown in the present model, especially for the radial bottom flow induced by the horseshoe vortex. 
The radial bottom flow after 30 minutes by the present model is developed from that on initial flat bed 
due to bed scouring. This phenomenon is similar as examined in previous experimental results by 
Melville & Raudkivi (1977) and computed results by the full 3D turbulence model (Nagata et al., 2005). 
As indicated above, the present model is reasonable to evaluate the bottom velocity fields around the 
pier, because the horseshoe vortex is mainly developed by the extension and rotation of the 
transverse vorticity in approaching flow. 

 

Figure 7 shows the comparison of bed topographies around the pier between measured (Fukuoka et 
al., 1997) and computed results after 30minutes. And Figure 8 shows the comparisons of longitudinal 
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and transverse bed profiles along the center-line of the pier. At the back of the pier, computed scour is 
not developed but computed sediment deposition is developed compared with those of the 
measurement. Roulund et al. (2005) also indicated that the scour depth at the back of the pier by the 
full 3D turbulence model with the bed variation model by the bed load sediment transport was smaller 
than that of the experiment.  To improve this issue, a suspended load sediment transport model is 
required, as indicated by Roulund et al. (2005). However, in the upstream part of the pier, computed 
scour hole is similar to that of the measurement.  And the upstream and lateral bed profiles of scour 
hole of the computation are in good agreement with those of the experiment. As indicated above, the 
present model is useful to simulate local scour in front of structures due to horseshoe vortex.  

 

5. CONCLUSIONS 

This paper indicates that the bottom velocity is evaluated by water surface velocity and depth-
integrated horizontal vorticity for shallow water flows. Based on this consideration, this study proposes 
a bottom velocity computation (BVC) method, in which depth-integrated horizontal vorticity and water 
surface velocity equations are solved in addition to shallow water equations and a depth averaged 
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turbulence energy transport equation. To develop a bed variation model for local scour around 
structures, non-equilibrium bed load equation is derived based on the momentum equation of the 
particle in the bed load sediment. It is demonstrated that the model can reproduce bottom velocity 
fields around the pier and the scour hole induced by the horseshoe vortex. 
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