石礫河川における河床変動,河床材料粒度分布の実験的及び解析的研究 EXPERIMENTAL AND NUMERICAL STUDY ON BED VARIATION AND GRAIN SIZE DISTRIBUTION IN STONY-BED RIVERS

土木工学専攻 37号 前嶋 達也

Tatsuya MAESHIMA

1. 序論

石礫河川の河床構成材料は,300mm を超える巨石から 2mm 以下の砂まで非常に幅広く存在する. また、河床勾 配が急であるため洪水時の流体力が大きく土砂移動が活 発となり、中小規模の洪水でも河床変動及び河岸侵食が 生じる. 洪水時の河床変動は, 流量規模, 河道平面形状, 河川構造物の影響に加えて河床構成材料が極めて重要と なる. 混合粒径を用いた河床変動に関する研究は数多く 行われているが (例えば芦田ら¹⁾), 既往研究の多くは, 室内実験水路で行われているため実験条件が限られ、特 に使用できる河床材料の大きさや粒度分布に限界がある. 福岡ら²⁾は, 2004 年から 2008 年にかけて常願寺川で現 地河床材料を用いた大規模現地実験を行い、河床材料が 大きい石礫河川における河床変動機構、河床材料分布特 性を調べた.しかし、これらの実験水路は単断面河道で あり、断面形状が単断面と複断面では洪水時の流れ場、 その結果として生じる河床変動及び河床材料分布は異な る.本研究は、2009年に常願寺川砂州上で行った複断面 直線 - 蛇行水路を用いた現地実験結果をもとに、複断面 河道における河道縦横断面形状、河床材料分布特性に関 して検討する.そして,既往の室内移動床実験との比較 を行い、石礫河川の河床変動に対する現地実験の持つ重 要性を示す.また,石礫河川の河床変動予測を目指して, 底面流速解法を用いた準三次元洪水流解析 3)と石礫河川 の河床変動解析 4を組み合わせた解析モデルを構築し、 2009年常願寺川現地実験に適用し検討した.

2. 2009 年常願寺川大規模現地実験

(1) 実験概要

実験は、常願寺川8.6kmの砂州上に2つの直線区間と その間に2つの蛇行部を有する複断面直線-蛇行水路を 掘削し通水した.図-1に実験水路平面図、図-2に掘削断 面形状を示す.2つの蛇行部の蛇行度S(低水路蛇行長/ 低水路蛇行波長)は1.1である.1つ目の蛇行部(No.5~ No.9)は、浸食性の自然河岸で形成されている.2つ目の 蛇行部(No.10~No.13)は、外岸堤防河岸から低水路際 (2.0m程度)にかけて、高さ0.5m、幅1.0m、奥行き1.0m の袋詰め玉石を複数積んで堤防河岸を保護した.その他 の地点の低水路河岸は、流量規模に応じて断面形状が変 形できる自然河岸である.また、堤防河岸の侵食による 大量の土砂供給を防ぐために、左右岸の堤防河岸際に、約400mm~700mmの玉石を連続的に配置した。

実験は、異なる規模の定常流を4回通水した.表-1に 実験条件、写真-1,2にCase3、Case4の実験状況を示す. 最大流量のCase4は常願寺川の平均年最大流量を単位幅 換算した流量(2.6 m²/s)の6割程度に相当する.通水時間 は、河床が動的に安定するまでの十分な時間とした.測 定項目は、水位(水圧式水位計、レベル測量)、流量、河 床縦横断形状、河床材料の時空間変化である.河床材料 は、表層画像解析とふるい分け試験(Case4 終了後)に より行った.図-1に観測地点を示す.

(2) 実験結果

図-3はNo.4(直線区間),No.7(蛇行区間)断面にお ける通水後の河床横断面形状とCase3終了後の河床表層

図-2 掘削水路断面図

表-1 実験条件 実験CASE Case1 Case2 Case3 Case4 流量 (m³/s) 2.0 3.2 8.0 12.0 通水時間 1時間40分 50分 2時間30分 2時間30分 低水路水深(m) 0.34 0.56 0.80 1.10 高水敷水深(m) 0.17 0.41 0.69 水面幅(m) 3.1 6.9 7.8 8.5 1/130 平均河床勾配 1/150

写真-1 Case3 中の流況

写真-2 Case4 中の流況

図-5 Case3 前後の河床変動量コンター

写真, 図-4 に同断面の河床材料粒度分布を示す. 低水路 満杯流量規模の Case2 では、若干の洗掘や堆積は生じる が直線部、蛇行部ともに断面形状は複断面形状を維持し ている. Case3 では、相対水深 Dr (高水敷水深/低水路水 深)が0.4を超え、図-5に示すように通水前後で河床変 動が縦断的に顕著に生じた. Case3 終了後の上流直線区 間は、低水路河岸及び高水敷河床が侵食され、断面形状 は左右対称に近い船底形断面⁵になっている. 侵食を受 けた低水路河岸の粒径は低水路河床材料よりも粗くなり, これが低水路を安定させる機構であることが分かる. 蛇 行頂部に位置する No.7 断面は, 遠心力に起因する二次流 が発達し、外岸河床の洗掘、低水路内岸の堆積が顕著に 生じ,初期の複断面形状から滑らかな横断河床勾配をも つ船底形断面形状に変化した.また、高水敷河床が侵食 されて大きな石礫が低水路に供給されるため、流量が増 大しても河床洗掘が進行するのではなく、むしろ河床高 は上昇している. Case3 終了後の平均粒径は、侵食され た外岸で約 200mm, 澪筋で約 90mm, 内岸で 50mm とな り、写真に示すように横断面内で河床材料の顕著な分級 が生じている. Case4 では大流量を通水したにもかかわ らず、直線部、蛇行部における河岸侵食及び河床洗掘に

よる断面形状の変化は小さい. これは, Case3 で安定な 断面形状と河床材料分布が形成されたことにより、大き な流量に対して抵抗力を持つためである.しかし、水位 上昇によって玉石背後の堤防河岸が侵食され砂礫が流出 した(写真-2). No.4 断面ではそれら砂礫が低水路河床 に堆積しており、低水路の河床材料は Case3 に比べて小 さくなった. 蛇行部では流量増加により二次流が強くな るため、蛇行部内岸の堆積は左岸高水敷まで達している. 堆積した内岸の平均粒径は約70mmであり、Case3に比 較して顕著に粗くなった. 断面形状の変化は少ないが 70mm 程度の石が実験中に活発に移動していたことを示 している.また、河床表層の石礫は、同じ方向を向いて 重なって堆積する覆瓦構造となり、石同士が互いに良く かみ合って安定している. 大きな石礫は, 流れに対する 抵抗力となり、断面形状及び河床材料分布特性に重要な 役割を果たすことを示している.

3. 芦田ら¹⁾の室内蛇行水路実験と現地実験の比較

芦田らは、水路長 10m、水路幅 0.2m の側壁が固定された蛇行水路において一様粒径と混合粒径を用いた移動 床実験を行った. 図-6 に芦田らが実験で用いた粒度分布 と常願寺川実験砂州上の粒度分布(ふるい分け試験)を 示す. 外岸域では河床洗掘、内岸域では土砂堆積が生じ、 河床材料は外岸で中央粒径 D_m =3.0~3.8mm、標準偏差の =3.5、内岸は D_m =0.9~1.1mm、 σ =2.0 となった. 常願寺 川実験(Case4 終了後)の蛇行部外岸の河床材料は D_m =130mm、 σ =6.6、内岸は D_m =40mm、 σ =4.4 であり、ど ちらの実験も標準偏差は、粗粒化する外岸で大きくなり、 堆積する内岸で小さくなった. 粗粒化した外岸域におけ る平均粒径の初期粒度分布からの変化は、どちらの実験

も約2倍、内岸と外岸の横断方向の平均粒径の差は約3 ~4 倍であり、変化の程度はそれほど異ならないように 見える.しかし、平均粒径の変化率及び標準偏差がほぼ 同じ値を示していても、河床材料が大きい石礫と河床材 料が小さい砂礫ではそれらの持つ意味は異なる.それは, 図-6 が示すように室内水路実験と常願寺川実験の河床 材料は、中央粒径は約20~50倍、標準偏差は約2~3倍 異なっており、現地石礫河川の河床材料は著しく広い粒 度分布で構成されているからである.砂河川・砂礫河川 は、粒度分布がある程度の広がりを有していても、河床 材料の粒径が小さいため河床表層の凹凸(空隙)は小さく, 時空間的に河床凹凸は大きく変わらない. 一方, 石礫河 川は、初めは細かい材料で河床表層は覆われているが洪 水の作用により大きな石礫が河床表層に露出するため, 河床凹凸(空隙)が時空間的に大きく変化し、砂礫河川に 比べて極めて大きくなる. 河床表層の凹凸は、土砂の移 動・堆積及び流れ場に影響を及ぼし、結果として河道断 面形を支配する要因となる. 加えて、石礫河床では、は まり石状の石が多くみられること、石礫の形状が様々で あるため石礫が互いに噛み合い容易に移動することがで きなくなる. 河床材料の粒径及び河床材料粒度分布は, 流砂・河床変動現象を支配する極めて重要な要素であり, 河床材料が大きい石礫河川の河床変動に関しては現地で

4. 底面流速解法を用いた石礫河川の河床変動解析

の検討が重要であることを示している.

(1) 解析手法, 解析条件

河床変動が顕著に生じた Case3 実験を対象に河床変動 解析を行う.実験水路は大きく蛇行しており,土砂移動 は二次流の影響を強く受けるため流れの計算は,平面二 次元解析では精度をあげた説明はできないと考えられる. また,石礫河川の土砂移動は,砂礫河川とは異なること から,従来の粒径別限界掃流力を用いる流砂量式と河床 材料の空隙率を一定とする河床の連続式を用いた解法で は再現することができない⁴⁾.本研究では,内田・福岡 ³⁾の底面流速解法を用いた準三次元洪水流解析と長田・ 福岡⁴の石礫河川の二次元河床変動解析を組み合わせた 解析モデルを構築する.流れの基礎式は,一般座標系 (ξη)の浅水流方程式と連続式,水表面流速の運動方程 式,水深積分渦度方程式を用いる. 渦度を用いた底面流 速解法を図-7に示す. 流速鉛直分布は3次多項式で仮定 している. 底面流速は,水深積分した渦度と水表面流速 を用いて(1)式から求める.

$$u_{bx} = u_{sx} - \Omega_{y}h , \quad u_{by} = u_{sy} + \Omega_{x}h \tag{1}$$

ここに, u_{bx} , u_{by} : x,y 方向の底面流速, u_{sx} , u_{sy} : x,y 方向の水表面流速, Ω_x , Ω_y : x,y 方向の水深平均渦度, h: 水深を表している.

河床変動計算は、上述の解析法により求めた底面流速 を用いて図-8 に示すように各粒径 k に働く力を考え、河 床からの離脱量 V_{Pk} , 堆積量 V_{Dk} 及び粒子速度 u_{Pxk} , u_{Pyk} を計算する. 石礫河川の河床変動で重要となる河床凹凸 は、河床からの離脱量と堆積量を用いて、(2)式に示す各 粒径の高さ Z_{Bk} を時々刻々計算することで表現している. 流砂量 q_{bxk} , q_{byk} は、(3)式に示す単位面積当たりの流砂 体積 V_{ck} と粒子速度を用いて(4)式より求める.

$$\frac{\partial Z_{B_{i,j,k}}}{\partial t} = -\frac{\alpha_2}{\alpha_3} \frac{\left(V_{P_{i,j,k}} - V_{D_{i,j,k}}\right)}{P_{i,i,k}} \tag{2}$$

$$\frac{\partial V_{S_{i,j,k}}}{\partial t} + \frac{\partial q_{B\bar{g},j,k}}{\partial \xi} + \frac{\partial q_{B\eta_{i,j,k}}}{\partial \eta} = V_{P_{i,j,k}} - V_{D_{i,j,k}}$$
(3)

$$q_{B\xi i,j,k} = u_{p\xi i,j,k} V_{S i,j,k} , q_{B\eta i,j,k} = u_{p\eta i,j,k} V_{S i,j,k}$$
(4)

ここに, *i,j*:メッシュ番号, *a*₂, *a*₃:粒子の形状係数 (π/4, π/6), *P*_k:各粒径の表層割合である.

解析で用いた粒度分布は図-4 に示した実測の粒度分 布を参考に表層と表層下に分けて与えた.上下流の境界 条件は,観測された水位ハイドログラフを用いた.実験 では,水路上流端からの土砂供給はなく,解析でも考慮 していない.

(2) 解析結果

図-9は約2時間後の解析水位と観測水位(レベル測量) の縦断図を示す.解析値は蛇行部を含めて観測水面形を 概ね再現している.図-10はNo.9断面で観測された流速 の横断分布と解析値の比較を示している.No.9は二つの 蛇行部の変曲点に位置し、上流蛇行部で加速された速い 流れが流入してくるため右岸側の流速が速い.解析流速

は、概ね分布形状を再現している. 図-11 は通水開始 50 分後の No.8 断面における粒径毎の単位幅流砂量分布を 示している. 河床中央で130mm, 70mm, 30mmの石礫 が主力として移動していることが分かる.外岸側では、 侵食により河床材料が粗粒化して安定するため、石礫の 移動はあまり見られない. 図-12 に解析河床変動量コン ター,図-13にNo.8 断面の解析横断面形状とD₆₀,D₈₀ 粒径の横断分布を示す. D₈₀は80%粒径を示している. 実測の水面形、流速分布を概ね再現できているため、直 線部の低水路河岸侵食,蛇行部外岸河床の侵食,蛇行部 内岸の土砂堆積は、図-5に示した実測コンターの傾向を 捉えている.石礫河川で重要となる河床表層の河床材料 は、澪筋河床、外岸河床の粒度分布を概ね再現しており 河床材料の分級が生じている.しかし、蛇行部内岸にお ける細粒土砂の堆積を十分に再現できていないため、実 験水路で現れた河床材料の顕著な分級は十分には再現で きていない. 石礫河川は、大きな石礫が河床安定・土砂 移動に重要であり、それら石礫の移動機構は本解析モデ ルにより再現することができた.

5. 結論

本研究の結論を以下に示す.

(1)石礫複断面蛇行河川は、低水路河岸及び高水敷河床が 洗掘され初期の複断面形状から流れの状況に見合った船 底形断面を形成する.洗掘及び侵食により現れる大きな 石が河床安定及び土砂の移動・堆積に支配的な要因とな ることが実験より明らかとなった.そのため、石礫河川 の河床変動は現地河川における検討が重要であることを 示した.

(2) 渦度方程式を用いた底面流速解法と石礫河川の二次 元河床変動解析法を組み合わせたモデルを構築し現地実 験に適用した.本解析法により,複断面蛇行河道の水位, 流速,河床変動及び粒度分布特性を再現できることを示 した.

参考文献

 1) 芦田和男, 江頭進治, 劉炳義, 梅本正樹: 蛇行流路に おけるSorting現象および平衡河床形状に関する研究, 京 都大学防災研究所年報, 第33号 B-2, pp.261-279, 1990.
2) 福岡捷二, 長田健吾, 安部友則: 石礫河川の河床安定 に果たす石の役割, 水工学論文集, pp.643-648, 2008.
3) 内田龍彦, 福岡捷二: 水平方向渦度方程式を用いた底 玉海湾市の兆克拉知法した期間内の目玉が拒絶犯ち, 水工学

面流速の半直接解法と橋脚周りの局所洗掘解析,水工学 論文集,第54巻,pp841-846,2010.

4)長田健吾,福岡捷二:石礫河川の二次元河床変動解析法に関する研究,河川技術論文集,第15巻,pp327-332,2009.

5) 福岡捷二: これからの河川管理を考える一自然河川に 学ぶ,河川 66巻, 第3号, pp.3-9, 2010.