流砂運動の素過程と流砂量に及ぼす粒子形状の影響に関する研究 Study on the effect of particle shapes on fundamental processes of particle movement and sediment transport rate in streams

14N3100029J 田所 弾 Hazumu Tadokoro

Key Words : gravel bed rivers, particle shape, elementary processes of sediment transport

1. 序論

石礫河川の河床は、砂礫河川に比べ、様々な大きさ と形状の粒子から構成されている. 一般に流砂量式で は、外力である掃流力に対し、抵抗する力は、移動粒 子群の水中重量と動摩擦角の積で見積もられている.

しかし,石礫河川では,粒子群は間欠的な運動形態を とり、大きな粒子による遮蔽など表層の河床構造が重 要である.様々な大きさと形状の粒子から構成される 石礫河川において、粒子群の動摩擦角が、流砂量にど の程度敏感に作用するかは不明である. 石礫河川の流 砂量を適切に推定するためには、動摩擦角とともに流 砂運動の素過程を考察することが重要である. しかし 石礫河川では洪水中の水流が激しいために、河床近傍 の流砂運動を観測することは困難である. そのような 背景の中, 石礫河川の土砂移動機構を明らかにするた め, 福田らは, 種々の形状と大きさの粒子群運動と流 体運動を同時に解析できる数値移動床水路を構築した¹⁾.

本研究ではこの数値移動床水路を用いて、水中での 数値崩落実験(図-1.2参照)を行い、粒子群の摩擦角は 水中安息角より求める. 崩落実験に用いた粒子群と同 じ粒子群による数値移動床実験(図-1,2参照)を行い, 流砂量と流砂運動の素過程を計測し、求めた摩擦角と 流砂運動の素過程に及ぼす粒子形状の影響について検 討する.

2. 数値実験の概要

図-3に示す5種類の粒子形状を用い、図-4に示す粒度 分布 (40mm 青色,50mm 赤色,70mm 水色,90mm 緑 色,120mm 黄色) となるように各粒子形状を均等な数に 設定し、数値実験を行った. 粒子形状を評価する方法 は幾つかあるが、本文では式(1)で示される粒子の三軸 (短径・中径・長径) によるShape Factor²⁾を用いる.

$$S.F. = \frac{c}{\sqrt{ab}} \tag{1}$$

ここに, a:長径, b:中径, c:短径であり, SF.が1に近い ほど球形に近いことを示す.5形状のS.F.を評価すると図 -3のようになり、石礫の中では形状1が球形に一番近く、 その他は似かよったSF.の値である. 粒子径は同一体積 の球の直径として定義している.

水中での数値崩落実験では水路の上流端から2mの範 囲に壁を立て、水深3.0mの条件の下、その間に高さ2m となるように粒子群を敷き詰め、瞬時に壁を取り除き 粒子群を崩落させる.数値移動床実験では、水路長15m の水路上流端で0.5 m³/sの一定流量を与える.給砂は下流 端を通過した粒子を同時刻に上流 x=1-2mの範囲にラン ダムに投下させる.数値解法は福田らの解析法¹⁾を用い, 流れは Euler 的に、粒子は剛体として Lagrange 的に解析 する.

> 0 10

100

図-4

^{粒径(mm)} 粒度分布

1000

崩落実験	投入粒子形状	tanΦ	移動床実験	投入粒子形状	流砂量(5粒径)[m ³ /s]
Case1-1	球形	0.40	Case2-1	球形	2.7E-03
Case1-2	石礫4形状	0.63	Case2-2	石礫4形状	1.5E-03
Case1-3	球形+石礫4形状	0.60	Case2-3	球形+石礫4形状	2.0E-03

図-2 崩落数値実験(左)と数値移動床実験(右)の実験条件と結果

3. tan Φ と 流砂量の 比較

(1) 崩落実験でのtanΦ

崩落実験では、崩落後の最急勾配を計測し、水中安 息角Φ(tanΦ)を求めた.同一粒子群の実験では、水路底 面を移動床・固定床、さらに崩落粒子群の敷き詰め高 さを変えてもtanΦの値がほとんど変化しない.実験結果 を図-2に示す.球粒子が多く含まれているほどtanΦの値 が小さくなることが確認できる.

(2) 数値移動床実験での流砂量

数値移動床実験で2m間隔・60s間計測された全粒径の 流砂量の時空間平均の値を図-2に示す. 球粒子が多いほ ど流砂量が大きくなっていることがわかる.

(3) 形状別流砂量に及ぼす粒子形状の影響

各粒径形状毎の流砂量を図-5,6に示す.球と石礫の 数値実験での結果を混合実験5形状の結果と比較するた め,それぞれの総流砂量を球は5で割ったもの,石礫はそ れぞれ5/4で割った値で示している.どの実験において も粒径が大きく,球形に近い粒子ほど流砂量が大きく なる傾向がある.球形単独(Case2-1)で行った数値実験に 比べ,混合実験(Case2-3)では相対的に球の流砂量の割合 が減少している.これは河床にある石礫粒子のかみ合 わせ効果⁴により,球粒子は動きにくくなったためと考 えられる.このように粒子は自身の形状だけでなく, 周りにある粒子群の影響も大きく受けている.

(4) tan Φと流砂量の比較

摩擦角 ϕ が流砂量に及ぼす影響について検討する.代表的な流砂量式である芦田・道上式は(2)式で表現され, $\mu_{E}tan\Phi$ である.

$$\frac{q_B}{\sqrt{sgd^3}} = \frac{\beta}{\mu_f} \tau_{*_e}^{\frac{3}{2}} (1 - \frac{\tau_{*_c}}{\tau_*}) (1 - \frac{u_{*_c}}{u_*})$$
(2)

ここに、 q_B :流砂量、s:水中比重、g:重力加速度、d:粒 径、 τ_{*} :無次元有効せん断力、 τ_{*} :無次元せん断力、 u_{*} :限 界摩擦速度、 u_{*} :摩擦速度、 Φ :摩擦角である.式(2)は l/μ_{f} と流砂量 q_B が1:1の関係にあることを示す。それに対し、 図-7に示す実験結果では、 $tan\Phi$ が大きくなるほど流砂量 が小さくなるという傾向を示している。以上より、粒 子群の物性値 $tan\Phi$ を用いれば、粒子群を構成する粒子形 状の変化による石礫河川の流砂量への影響は、おおよ そ推定できることがわかる。

4. 流砂運動の素過程に及ぼす粒子形状の影響

3章では粒子群の物性値tangが,流砂量に及ぼす影響 について検討したが,より詳細に石礫河川の流砂量を 推定するため,本章では流砂運動の素過程に及ぼす粒 子形状の影響について検討する. Case2-1,3の実験結果を 用いて,各粒径毎の粒子形状がAzd²(水路上から見た時 のpick-up粒子の静止状態の面積),Pick-up rate, Step lengthに 対し,どのように効いているか検討する.そして上記 の計測した素過程を用いて流砂量式(3)から算定する流

図-5 Case2-1, 2-2 で計測した流砂量

砂量と,数値移動床実験で直接計測した流砂量を比較 する.

$$q_B = \frac{A_3 d^3}{A_2 d^2} \cdot \Lambda \cdot p_s \tag{3}$$

ここにPs: pick up rate, Λ : 平均step length, $A_3 d^3$: 粒子体 積, $A_2 d^2$: 水路上から見た時のpick-up粒子の静止状態の 面積である. この式では、ある流砂量計測断面を通過 する石礫はその上流側でpick up された石礫粒子であり、 単位幅流砂量を考えた時に、pick upの対象領域を面積 Λ とし、その対象領域内には ($\Lambda/A_2 d^2$) 個の粒子が河床に 存在する. $A_2 d^2$ とは河床粒子が静止している際に、水路 上から見える粒子面積である. その粒子1つの単位時間 当たりの離脱確率がPick-up rateであり、対象領域から単 位時間にpick-up される粒子数はPs ($\Lambda/A_2 d^2$) 個となる. これに粒子の1個当たりの体積 $A_3 d^3$ を乗じることで計測 断面での流砂量を表現したものが、流砂量の基本式(3)³ である.

(1) 河床粒子(移動する確率を持っている粒子)の定義

数値移動床水路では時空間的に河床を構成している すべての粒子の座標を把握することができる. どのよ うな状態の粒子をもって河床粒子(移動する確率を持 っている粒子)と定義するかは、石礫粒子群の離脱・ 移動過程を検討する上で特に重要である. 水路を上か ら見た際にすべての見える粒子を河床粒子として定義 してしまうと、他の粒子の下に大部分が隠れていて、 移動する確率が限りなく0である粒子もPick-up rateの母数 に含まれてしまい,正しい分析をすることができない. 図-8に水路上から少しでも見え、静止しているすべての 粒子の面積割合分布と数値移動床実験において実際に 動き出した粒子が動き出す前の静止時に水路上から見 える面積割合分布を示す. ここでの面積割合とは,同 粒径の球の投影面積 (πd/4) に対する水路上から見え る面積 $(A_{a}d^{2})$ の割合 $(A_{a}d^{2}/(\pi d^{2}/4))$ を表すものである. これより静止時の面積割合が7割以上の場合に多く動き

出していることが確認できる.以上の結果より、本論 文での河床粒子は水路上から見た際に、同粒径の球の 投影面積と比較して7割以上見えている粒子と定義する.

Pick up 粒子の静止状態の面積A2d²(静止時に水路 (2) 上から見える面積)に及ぼす粒子形状の影響

図-9は離脱粒子が河床表層から抜け出す際の粒子面積 $(A_{x}d^{2})$ の同粒径の球に対する投影面積 $(\pi d^{2}/4)$ の割合 (Axd²/(πd²/4))を示す. 粒子の始動判定に関しては, 河 床に停止していた粒子が水流の流体力や粒子衝突力に より動きだし、流下方向速度が0.05m/sを一定時間超えた 場合を移動開始時として定義する. これより粒径が大 きい粒子ほど河床表層に大きく露出していないと動き 出せないことがわかる. これは小さい粒子は周りの粒 子の始動に伴って動き出すことができるためと考えら れる4. また石礫河川では砂礫河川に比べ粒度分布の幅 が広く、小さい粒子ほど相対的に大きな粒子と衝突する ことにより始動しやすく、これも原因の一つと考えられ る. 粒子形状に関しては、球から異なる形状の粒子ほ ど重心を低くし、平らな面(短径)を上に向けて流体 力を受けにくい形で停止するため、同粒径の球に対す

る水路上から見える面積の割合が大きくなり、動きだ しにくい状態にあることが考えられる. 図-10に石礫粒 子の離脱過程の一例を示す. さらに大きい粒子ほど粒 子形状によるAdの差が顕著に出ている(図-9参照). こ れは大きい粒子は小さい粒子に比べて相対的に周りの 粒子配置の影響が小さくなるため、安定な向きを比較 的とりやすいことが考えられる.

(3) Pick-up rateの評価

上記で定義した河床粒子を用いた離脱確率 (Pick-up rate)の評価方法について説明する.水路(2-12)m区間に おいて河床表面に停止して存在する各粒径形状の粒子 数と、その中で始動した粒子の個数を計測し、Pick-up rate (1/s) を評価した. 図-11にPick-up rateの計測結果を示 す. これより粒径が小さいほどPick-up rateが大きくなる. これは小さい粒子は大きい粒子に比べて相対的に流体 力や粒子との衝突によって、始動しやすいためである. また小さい粒子・大きい粒子ともに球から異なる形状 の粒子ほどPick-up rateが小さくなる傾向を示す. これは

形状1 形状2 形状3 形状4 図-9 Pick up される粒子の Add と粒子形

120mm

0.9

球形単独 球形

図-10 石礫粒子の離脱過程(一例)

図-9に示すように、球から異なる形状の粒子ほど重心 を低く、平らな面(短径)を上に向けて流体力を受け にくい形で停止することができるためと考えられる. しかし形状によっては球よりも*Pick-up rate*が大きい値を 示している.これは河床粒子の停止向きは主に周りの 粒子配置により決まってしまうため、粒子自身の形状 が始動に及ぼす効果は*Pick-up rate*には顕著に出にくいた めと考えられる.

(4) Step lengthの評価

Step lengthは粒子が動き出してから停止するまでのx方 向移動距離と定義され、大きい粒子のStep lengthは長い ため、数値移動床水路が十分長くないと計測出来ない. したがって、ここでは数値移動床水路で十分な標本数 を計測することができる小さい粒子 (d=40,50nm)の Step lengthを図-12に示す. Step lengthは粒径で無次元化し ている.小さい粒子のStep lengthでは、球形よりも石礫 粒子の方がStep lengthが大きくなる傾向を示している.

(ここで*d=70mm*粒子は標本数が少ないが、参考のため 図にのせている.)

(5) 流砂運動の素過程と流砂量の関係

流砂運動の素過程であるPick-up rateとAd (Pick up 粒子の静止状態の面積), Step lengthと,流砂量の関係について考察する.まず大粒径粒子について考察する. 大きい粒子の流砂量は球と比較して最大で2倍程度,球と異なる形状の粒子ほど流砂量が小さくなっている

(図-6参照). この時. Aadの大きさは, 球の形状と異 なるほど大きくなる傾向を示し(図-9参照),一方 Pick-up rateは、球とは異なる形状ほど小さくなる傾向を 示す(図-11参照). つまり球から異なる形状の粒子ほ ど重心を低く、流れに対し安定した向き(平らな面を 上)をとって停止することができるため、離脱しにく くなり, Pick-up rateの値が小さくなっている. 小さい粒 子の流砂量は10%程度、球とは異なる形状ほど小さくな っている(図-6参照). その時Azdは,大きい粒子と同 様に球から異なる形状ほど大きくなる傾向を示してい るが、その変化は大きい粒子に比べると小さい(図-9参 **照**). Pick-up rateは大きい粒子と同様に、球とは異なる 形状ほど小さくなる傾向を示す(図-11参照)のに対し, 小さい粒子のStep lengthは球とは異なる形状ほど大きくな る傾向を示している(図-12参照). 粒径毎・流砂量の 素過程毎に粒子形状の影響が異なることを示した.

図-13にて、これまで計測した流砂運動の素過程 (Pick-up rate, Step length, A₂d)から式(3)を用いて算定した d=40,50mmの流砂量と、数値移動床水路において2m間 隔・60s間計測した同粒径同形状の流砂量の時空間平均 の値を比較する.これより流砂量の時空間平均と、数 値実験で計測した流砂運動の素過程から算定した流砂 量は、各素過程が十分に計測できたd=40,50mmに関して

は、概ね近い値を示している.

5. 結論

粒子群としての摩擦角Φと流砂運動の素過程が流砂量 に及ぼす影響を明らかにした.そして摩擦角Φを使えば, 粒子形状が流砂量に及ぼす影響をおおよそ推定できる が,より適切に推定するためには,粒子形状が流砂量 の各素過程に及ぼす影響を取り込んでいく必要性を示 した.

参考文献

1)福田朝生,福岡捷二,内田龍彦:移動床数値実験水路を 流下する石礫粒子群の三次元運動,土木学会論文集 B1 (水工学), 2013.

2)河村三郎:土砂水理学1,森北出版,1982

3)辻本哲郎,後藤仁志,中川博次:時間軸上に展開された 非平衡流砂過程のモデル化,土木学会論文集,1992.

4)田所弾,福田朝生,福岡捷二:等価な粒度分布を有する球 と石礫で構成される二つの数値移動床上の粒子運動の比較検討, 土木学会論文集B1(水工学),2014.