水流中の石礫河床の安定に及ぼす粒子形状の効果

Effects of particle shapes on the stability of gravel beds in streams

14D3101023L 熱海 孝寿(河川工学研究室) Takatoshi ATSUMI / River Engineering Lab.

Key Words : gravel bed , particle shape , numerical movable-bed channel

1. 序論

石礫河川の河床は幅の広い粒度分布、様々な形状を有 する河床材料で構成されており、洪水時には大粒径粒 子が露出し抵抗となり周囲の小粒径粒子の流出を抑制 する. 洪水後には図-1の赤枠で示すような石礫河川特有 の覆瓦構造を示す.洪水時の河床の安定には粒度分布 の影響だけでなく粒子形状の影響も大きいと考えられ る. 石礫河川は,洪水中の水流が激しいために河床近傍 の流砂運動を観測することは容易でない. 近年計算機 能力の向上を背景に、流砂現象の力学を解明するため に、計算力学的アプローチが用いられてきた.しかし、 粒子の形状を球と仮定する場合が多く、石礫河川の理 解は不十分である. 福田ら1)は,任意の形状と大きさの 粒子群運動と流れを同時に解析できる数値移動床水路 を構築し石礫河川の移動機構を検討した.田所ら²は, 数値移動床水路を用いて流砂量や流砂の運動機構には 粒子形状の影響が大きいことを示している.しかし, これらの検討では多くの新しい知見が得られたが多様 な形状・粒径からなる石礫群を用いた実験のため、粒 径や形状の影響が複雑に作用し河床の安定に及ぼす形 の効果を見ることが困難であった.

本研究では、2種類の一様な形状・粒径からなる石礫群 を用いて数値移動床実験を行う.河床表層の構造,流 れ場を分析し石礫河川の河床変動に粒子形状が及ぼす 影響について理解を深める.

2. 数値実験の概要

(1) 解析方法

a) 流れの解析

流れの解析では以下の式(1)-(6)に示す粒子・流体混合の一流体モデルを用いる.

$$\frac{\partial u_i}{\partial x_i} = 0 \tag{1}$$

$$\frac{\partial u_i}{\partial t} + u_j \frac{\partial u_i}{\partial x_j} = g_i - \frac{1}{\rho} \frac{\partial P}{\partial x_i} + \frac{\partial}{\partial x_j} \left\{ 2 (\nu + \nu_t) S_{ij} \right\}$$
(2)

図-1 河床に見られる覆瓦構造(旭川)

$$S_{ij} = \frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right)$$
(3)

$$v_t = (C_s \Delta)^2 \sqrt{2S_{ij}S_{ij}} \tag{4}$$

ここに、 u_i :流体計算セル内のi方向平均流速、P: 圧 力とSGS応力の等方応力成分の和、 ρ :密度、 μ :粘性 係数、 g_i :重力加速度、 v_i :SGS乱流粘性係数、 Δ :計 算格子幅、 C_s :Smagorinsky定数(0.173)である。 物性値 ϕ (密度 ρ ,粘性係数 μ)および流速 u_i は、そ れぞれ次のように体積平均および質量平均とした。

$$\phi = \alpha \phi_s + (1 - \alpha) \phi_f \quad \phi_f = f \phi_l + (1 - f) \phi_g \tag{5}$$

$$u_i = \left\{ \alpha \rho_s u_{si} + (1 - \alpha) \rho_f u_{fi} \right\} / \rho \tag{6}$$

ここに、f: コントロールボリューム内の液相の占める $割合、<math>\alpha$:流体計算セル内の気相以外の領域における 固相の占める割合を示す.下付のl, s, gはそれぞれ液 相、固相、気相を示す. u_s :固体の速度、 u_l は流体の流 速である.

b) 石礫粒子運動の基礎式

石礫粒子の運動解析には、 剛体の並進運動に対する

方程式(7)および回転運動に対する方程式(8)を用いる.

$$M\ddot{\mathbf{r}}_{G} = M\mathbf{g} + \mathbf{F}_{f} + \mathbf{F}_{c} \tag{7}$$

$$\dot{\boldsymbol{\omega}}_{r} = \boldsymbol{I}_{r}^{-1} \left\{ \boldsymbol{R}^{-1} \left(\boldsymbol{N}_{f} + \boldsymbol{N}_{c} \right) - \boldsymbol{\omega}_{r} \times \boldsymbol{I}_{r} \boldsymbol{\omega}_{r} \right\}$$
(8)

ここに、ベクトルおよびテンソルは太字で示しており、 M:石礫粒子の質量、 r_{G} :石礫粒子の重心位置、g: 重力加速度、F:石礫表面に作用する力、 ω :角速度、 N:石礫に作用するトルク、R:剛体に固定された座 標系から空間座標系への座標変換のテンソル、I:慣 性テンソルである.下付f, cは、流体力および接触 力による値を示し、下付rは剛体に固定された座標系の 成分を示す.ドット記号は、時間に関する微分を示す. c)流体力の評価方法

石礫粒子に作用する流体力は,抗力係数を用いず,流 れ場の解析から直接粒子に働く流体力を評価する.石 礫粒子に働く流体力は,圧力項,拡散項を用いて評価 し.これを石礫粒子が含まれる範囲で体積積分し,式 (9)、(10)で評価する。

$$F_{f,i} = \int_{\Omega_s} \left\{ -\frac{\partial P}{\partial x_i} + \rho \frac{\partial}{\partial x_j} \left\{ 2(\nu + \nu_t) S_{ij} \right\} \right\} d\Omega \quad (9)$$
$$N_{f,i} = \int_{\Omega_s} \mathcal{E}_{ijk} r_{f,j} \left\{ -\frac{\partial P}{\partial x_k} + \rho \frac{\partial}{\partial x_l} \left\{ 2(\nu + \nu_t) S_{kl} \right\} \right\} d\Omega \quad (10)$$

ここに $F_{f,i}$ は*i*方向の流体力, $N_{f,i}$ は流体力によるトル クの*i*方向成分, $r_{f,i}$:石礫粒子重心から力の作用点に 向かう位置ベクトル, Ω_s :石礫粒子が含まれる領域, ε_{iik} :エディントンのイプシロンである.

(2) 数値実験水路の諸元と実験条件

数値実験水路は,長さ15m,幅1m,勾配1/20の一様な 直線水路である.図-2は用いた粒子を示す.水路に一様 な粒径,形状からなる石礫群をランダムに投下し河床 を作る.2つのケースは共に投入した石礫群の総土砂量 は等しい.代表粒径は同体積の球の直径と定義してお り,d=70mmの石礫である.初期水深を60cmと与え,

水路上流端では5秒間かけて流量を0.0 m³sから 0.5 m³sま で上昇させその後一定流量とした.下流端の境界条件 には圧力ゼロを与えた.給砂は下流端を通過した粒子 を同時刻に上流 x=1-2 mの範囲にランダムに投下させる. 流れ場の解析メッシュは $\Delta x=1$ cm, $\Delta y=1$ cm, $\Delta z=1$ cm である.

(3) 粒子形状

粒子形状の評価は式(11)で示される粒子の三軸(短径・中径・長径)によるShape Factor³⁾を用いる.

$$S.F. = \frac{c}{\sqrt{ab}} \tag{11}$$

ここに、a:長径、b:中径、c:短径であり、S.F.が1に 近いほど球形に近いことを示す.浅川で石礫形状の調 査を行った.線格子法により石礫50個を採集し三軸を計 測した. 既往の研究で粒子のS.F.の値は0.3~1.0の値にあ り約0.7 が支配的³であることが分かっている. 今回数 値実験で用いた粒子形状は浅川の石礫を参考にモデル 化した.表-1は数値実験で用いる粒子形状と、浅川の石 礫50個の形状の諸量を示す.現地の石礫は多様な形状を 有している、このため形状を代表することは難しいが 今回数値実験で用いる図-2の粒子形状は実河川によく見 られるものである. Casel は中径と長径の比が大きく短 径と中径の比が小さい、不規則な凹凸がある平たい形 状である.一方、Case2は中径と長径の比が小さく短径 と中径の比が大きい, 凹凸が小さく滑らかで規則的な 棒状の形状である. Case1は粒子の姿勢によって、流れ による離脱のしやすさが大きく変わるのに対して, Case2の形状では粒子の姿勢によって流れによる離脱の しやすさがあまり変わらない形状特性を持つ.

図-2 数値実験で用いた粒子形状

表-1 形状の諸量

代表粒径:d,長径:a,中径:b,短径:c			
	Case1	Case2	浅川の石礫50個 の平均値
中径と長径の比:b/a	0. 74	0.67	0. 66
短径と中径の比:c/b	0. 62	0. 70	0. 63
S. F.	0.53	0.58	0. 51

3. 数値実験の結果

(1) 数値移動床の実験での通過土砂量

通水開始から100秒間にx = 11mの地点を通過した土砂 量はCase1は0.07 m³(365個), Case2は0.12 m³(672個)と なった. Case2はCase1の約1.8倍多く,移動しやすい形状 といえる.以下では河床近傍の流れ場や粒子の姿勢や 配置について考察する.

(2) 河床近傍の流れ場

図-3は通水前のそれぞれの平均河床高さ付近の流下速度のコンター図を示す.黒線は粒子の輪郭を示す.両者を比較するとCaselは河床の洗掘が小さく,一方Case2は洗掘箇所と堆積箇所がより顕著で特にx=10-11.5 mの範囲で大きく洗掘している.洗掘傾向にある場所は,粒子の隙間に入り込んだ流れが流下方向に複数の縦筋を発達させ,その延長上にある粒子を移動させる.縦筋内では流れが速く流速は2 m/sほどになり,流下するにつれて横断方向に一様に近い洗掘域を作る.粒子群内の流れ構造は鉛直方向に大きく変化している.流れ場の水平,鉛直構造を詳しく調べる必要がある.

(3) 初期の河床と離脱しやすい粒子

図-4は初期の河床を示す.初期の河床の空隙率はCasel は0.40, Case2は0.36であった.Caselは複雑な形状をして おり,各粒子間の距離が大きい.一方Case2は規則的な 形状をしており各粒子間の距離が短いため初期の河床 に空隙率の違いが見られた.多数の粒子が平たい面を 上にして堆積している.図中の白枠で囲われた粒子は, 通水開始から5秒間までに姿勢が変化した,または離脱 した粒子を示す.これらの粒子は河床表層に長軸を鉛 直方向に向けた粒子のように周囲の粒子に比べ高い位 置におり,また不安定な姿勢の粒子である.

(b) Case2

図-4 初期の河床

(4) 河床表層に見られる安定な粒子集団

図-5はCase2を例に解析結果から分かる河床表層に見 られる安定な粒子集団の配置を示す. ここで述べる安 定とは、粒子が離脱、滑動しにくい状況にある粒子と する.図-5のオレンジ色の粒子は粒子集団の核になる粒 子である. この粒子は長軸を鉛直方向に向け礫床にあ る程度埋没しており容易に抜け出せない. 核となる粒 子の周囲には同心円状に、8個程度の粒子が堆積し集団 を形成する.周囲に堆積する粒子は流下方向に長軸を 向け、また平らな面を上に向けた特徴的な姿勢を取っ ている.集団を構成する粒子の粒子間の距離が近い. そのため、流体力や移動して来る粒子の衝突による大 きな外力に対して粒子間で力を伝え、分散させること で集団を維持していると考えられる.図-6はCaselと Case2に見られた粒子集団を示し、両者を比較をする. Case1の形状は、Case2に比べ平らな面の面積が大きい. その為粒子集団もCase2に比べ面積の大きい粒子集団を 作る.また、核となる粒子の周囲にある粒子は面を接 して堆積している. そのためCaselの粒子集団の方がよ り安定した粒子集団を形成していると考えられる. 図-7 に河床の平面状況を示す. オレンジの点線で囲う粒子 は核となる粒子で,黒色の点線内が粒子集団を示す. 図-7(a)よりCase1は核となる粒子の距離が近く、粒子集 団が互いに影響しあい、河床の安定に寄与していると 考えられる. Case2の方が流下方向に長軸を向け平らな 面を上に向けた特徴的な姿勢を示す粒子が多い. しか し、粒子集団を形成せずに単体の粒子が姿勢を変える だけでは流体力や衝突に対して耐えられず離脱しやす い. 容易に離脱せず安定して堆積するには、粒子自身 の姿勢だけでなく周囲の粒子との配置が特に重要であ る.

4. 結論と課題

ー様な形状・粒径からなる石礫群を用いて数値移動 床実験を2ケース行い,移動床での形状の効果が大きい ことを確認した.また,河床の安定には,粒子の姿勢 だけでなく配置が重要であることが分かった.今後は 水平,鉛直方向の流れ構造の変化に着目していく必要 がある.

参考文献

1) 福田ら 土木学会論文集 B1 (水工学), Vol. 69, No. 4, pp. I_1051-I_1056, 2013.

2) 田所ら 土木学会論文集 B1 (水工学), Vol. 70, No. 4, pp. L961-L966, 2014.

3) 河村三郎:土砂水理学1, 森北出版, 1982

(b) Case2 図-7 河床の平面状況