山地河川における多地点水位観測データを用いた 流量ハイドログラフ算定法に関する研究 Estimation of the flood flow discharge hydrograph in mountain streams using multiple-water level observation data

16N310010K 大野 純暉 (河川工学研究室) Jyunki ONO/River Engineering Lab.

Key Words : mountain stream, observed water surface plofile, flood flow analysis, discharge hydrograph

1. 序論

上流域の山地河川における洪水中の水位,流量ハイ ドログラフを把握し、中・下流域への洪水伝播機構を 理解することは、洪水時の河川とその流域の安全性を 確保するために重要である. これまで福岡¹らは、河道 内で生じる洪水現象の解明のために,洪水時に観測さ れた水面形時系列データに基づいた洪水流解析法を提 案し、多くの緩流河川で適用され、有効な方法として 用いられている. すなわち, 洪水中の観測水面形には, 河道形状や底面粗度,河床変動の影響が現れているこ とから、観測水面形時系列に基づいた洪水流解析を行 うことで、洪水水理現象を明らかにすることが可能で ある.しかし、山地河川では緩流河川と同様に、水面 形の観測値に重要な意味を持つかどうか定かでない. 特に山地河川では、人の立ち入りに危険を伴うことか ら観測場所は限られ、また大きな石からなる底面粗度 の影響を受ける等、洪水時に山地河川で洪水水面形時 系列や流量ハイドログラフの観測を行っている例は少 ない. 塚本ら²は、ダム管理で用いられているダムへの 流入量や放流量の精度を調べることを目的に、草木ダ ム貯水池内とその上・下流河川において水位を縦断的 に多点で計測し、ダム流入量や放流量を算定し、ダム 貯水池内の流動を分析した.検討の結果,草木ダムの 管理で用いられている洪水時のダムへの流入量や放流 量は比較的精度が高く、山地河川においても観測水面 形に基づいた手法の有効性の高さを示している.しか し、他の異なる洪水、河道特性を有する山地河川に対 して, 観測水面形を用いた洪水流解析の有効性を確認 し、洪水流解析を行う上での留意点について明らかに する必要がある.

本研究では,異なる河道特性を持つ山地河川や規模 の異なる洪水を対象に,観測水面形を用いた洪水流量 ハイドログラフの算定法の適用性を調べ,山地河川で の流量ハイドログラフ算定における留意点と課題につ いて示す.

2. 山地河川における観測水面形に基づいた検討の概要

(1) 対象とする山地河川と洪水

本研究では、北海道留萌川流域の留萌ダム貯水池上 流に位置するチバベリ川、チバベリ右川、チバベリ左 川と、広島県太田川流域の温井ダム貯水池上・下流に 位置する滝山川を対象とする.対象とする河川の河床 勾配は1/60~1/130と急流である.また、同じ山地河川に あっても図-1に示すように、留萌ダム上流域では1m程 の植生が多く繁茂し、河床材料は10cm程度の粗石で構 成されている.一方、温井ダム上・下流河川では河道 内に0.5~1m程の巨石が散在しており、河道の地被状況 は大きく異なっている.

本研究では、図-2に示す平成25年9月留萌川洪水と平 成29年7月滝山川洪水である.留萌川洪水は、比較的規 模の小さな洪水であったため、洪水吐からの放流はな

*カッコ内の数字は各河川の集水面積を示す (a) 留萌ダム上流河川群

図-3

図-4 チバベリ川の平面図 (チバベリ川 5.4km 周辺)

かった. 滝山川洪水は, 温井ダム地点における既往最 大洪水であり, 比較的規模の大きな洪水であった. こ こで, ダム放流量はダム堤体で計測された貯水位ハイ ドログラフを用いて, ゲートの放流量算定式によって 算出したものである. ダム流入量は, 貯水池内の水面 が水平に上昇・下降すると仮定したH-V関係を用いて算 出される貯留率と放流量の和から算出した.

(2) 洪水観測体制

図-3はそれぞれの山地河川流域の航空写真と水位計観 測地点を示す.水位計はダム上・下流河川及びダム貯 水池内で,縦断的におよそ1km以内の間隔で設置され, 時間的に10分間隔で水位観測が行われている.留萌ダム では,本川のチバベリ川に匹敵する集水面積を持つチ バベリ右川,チバベリ左川が流入していることから, チバベリ右川,チバベリ左川においてもチバベリ川と 同様に多点で水位観測が行われた.

3. 洪水流解析法の概要

洪水流解析法は、多くの緩流河川で検討が行われて きた洪水観測水面形時系列に基づいた非定常準三次元 洪水流解析法³である.上下流端の境界条件は、図-3中 の橙色の四角で示す地点の観測水位ハイドログラフを 与える.解析に用いる地形データは、200mの縦断間隔 で計測された横断測量データを用いた.これに加えて、 山地河川では横断測量断面間においても河道線形や地

(c) 温井ダム下流河川

留萌ダムと温井ダム流域の航空写真と水位観測体制

形が複雑に変化するため、図-4に示すような等高線が描 かれた平面図や航空写真を参考に、実際の河道地形を 補完し再現するよう地形データを作成した.

4. 洪水流観測結果と解析結果の比較

図-5はチバベリ川とチバベリ右川の観測水面形と解析 水面形の時系列の比較を示す.プロットで観測値,実 線で解析値を示す.チバベリ川の5.4km周辺の観測水面 形は,図-4に示す河道の湾曲によって水位がせき上がる 等,特徴がよく表現され,観測水面形も再現している. チバベリ右川の解析水面形も,2.4km 地点の痕跡水位を 除きよく再現できている.尚,チバベリ左川の水面形 の比較は紙面上省略するが,チバベリ川,チバベリ右 川と同程度に,解析水面形は観測水面形の特徴を再現 している.

次に、図-6に温井ダム上・下流河川の滝山川における 観測水面形と解析水面形の比較を示す.温井ダム下流 河川における解析結果は、3.7km地点の直下流部に位置 する後平堰の天端高や形状を別途計測し、地形データ として与えることで、3.7km直上流の水面形の特徴を再 現している.温井ダム上流河川では、5.46kmの水位観測 値を解析値は十分に再現できていないが、その他の観 測点を用いて描かれた各時間の解析水面形は観測水面 形をほぼ再現している.

本研究では、局所的な観測水位が、河道全体の水面 形には大きく影響しないと考え、粗度係数は空間的に は変化させずに、各時間の観測水面形を平均的に再現 するように設定した.植生や巨石を有する山地河川に おいて、水位が低い時間帯と高い時間帯では、洪水流 が受ける抵抗は異なると考えられる.この点に関して、 本検討では各時間における河道全体の観測水面形を平 均的に説明するように、粗度係数を与えた.**表-1**は、そ れぞれの山地河川で設定した各時間の粗度係数を示し ている.各河川において、水深が低い時間帯は高い粗

表-1 各時間の設定した粗度係数

留萌ダム上流河川	
9/4 19:00~9/4 23:00	0.06
9/4 23:00~9/5 1:00	0.06→0.04
9/5 1:00~9/5 4:00	0.04→0.06
温井ダム下流河川	
7/5 0:00~7/5 3:30	0.085
7/5 3:30~7/5 9:00	0.085→0.05
7/5 9:00~7/5 14:00	0.05
7/5 14:00~7/5 15:00	0.05→0.13
7/5 15:00~7/6 0:00	0.13
温井ダム上流河川	
7/5 0:00~7/5 3:30	0.07
7/5 3:30~7/5 9:00	0.07→0.05
7/5 9:00~7/5 14:00	0.05
7/5 14:00~7/5 15:00	0.05→0.07
7/5 15:00~7/6 0:00	0.07

度係数を与え、水深が大きくなるにつれて粗度係数を 時間的に小さくなるように設定した.留萌ダム上流河 川では10cm程度の粗石や1m程の植生を有していること から、水深が1m以下となる時間帯(9/4 19:00-9/4 23:00)に おいて、設定した粗度係数はn=0.06(m¹³·s)と大きい値に なった.滝山川では、0.5~1m程の流れを阻害する規模の 巨石が河道内に点在し、特に水深が低い時間帯では巨 石による抵抗を大きく受ける.このため水深が低い時 間帯の粗度係数は、留萌ダム上流河川よりもさらに大 きい値となった.また同じ滝山川においても、ダム下 流河川の方がダム上流河川よりも水面幅が大きく、水 深が小さい為に、ダム下流河川における観測水面形を 説明するよう設定した粗度係数は、ダム上流河川に比べてさらに大きくなり、洪水減水期(7/5 15:00~7/6 0:00)にはn=0.13(m^{1/3}・s)と著しく大きな値をとることとなった.

次に, 各河川の水面形時系列から算出した流量ハイ ドログラフについて考察する.解析流量は、図-3中の水 色の太い実線で示す貯水池上流端で求められている. 図-7は留萌ダム貯水池へ流入する流量ハイドログラフに ついて示す.赤線で示す解析総流入量は各河川の解析 流量の合計値であり、緑色の実線で示すH-V 関係より求 めたダム流入量よりも、ピークでやや大きいが、ハイ ドログラフの形はほぼ一致し、再現性は高い.一方、 温井ダム流入量・放流量と山地河川の解析流量ハイド ログラフの比較を図-8に示す.図-8(a)の実線で示す温 井ダム下流河川における水面形時系列から得られる解 析流量ハイドログラフは、プロットで示すダム放流量 ハイドログラフよりも、洪水減水期でやや大きくなっ ている.この原因については、さらに調べる必要があ るが,波形の特徴は再現している.図-8(b)のダム上流 河川の観測水面形時系列から求まる流量ハイドログラ フは両者の波形はほぼ一致しているが、全時間帯で、 解析流量は多く計算されている. これらは, 設定した 山地河川の粗度係数の値が、流量算定精度に影響を及 ぼす為である.本検討では、観測水面形時系列を説明 するように粗度係数を設定したが、河道内に植生を有 いていたり、河床材料が著しく大きい山地河川におけ

る河床から受ける抵抗を粗度係数で評価できるかにつ いては課題がある.

得られた検討結果の考察と山地河川における 洪水流量算定を行う上での留意点と課題 (1) 得られた検討結果の解釈・課題

対象とした留萌川洪水は,洪水規模が比較的小さく, 洪水吐からの放流量がほぼゼロであった. このため, 貯水池のH-V 関係から算出されるダム流入量ハイドログ ラフの算定精度は高いと考えられる.検討の結果,山 地河川の水面形から算定した解析流量ハイドログラフ が, H-V 関係から算出されるダム流入量ハイドログラフ と十分な精度で一致したことから、観測水面形を用い た洪水流量の算定は、留萌川でも適用可能であること が分かった. 温井ダム上・下流河川の検討結果では, ダム上・下流河川における水面形に基づいて算出した 解析流量ハイドログラフは、ダム流入量や放流量ハイ ドログラフと波形はほぼ一致し、洪水規模の大きい洪 水についても本手法が有効であることを示した. しか し、水面形を説明するように設定した粗度係数は、通 常の摩擦による粗度係数に比して著しく大きな値とな っており,その値の妥当性に課題を残している.本検 討は、山地河川で観測水面形時系列データを得て、水 面形に基づいた洪水流解析を行うことは十分な意味を 持つが、山地河道の植生による抵抗を樹木群透過係数 で評価することや、河床に巨礫を多く有する山地河道 における抵抗の評価方法を新たに検討する必要がある ことを示している.

(2) 山地河川における観測上の留意点

留萌ダム上流河川の検討結果より、山地流域からの 洪水流量を算定する際,本川の流域に匹敵する大きな 支川が流入する場合は、本川、支川の水位観測システ ムを構築し、どのような洪水流量ハイドログラフがダ ム貯水池へ流入するかを高精度に知ることがダム管理 上重要である.水面形は、周辺の河道形状や地形の影 響を大きく受けるため、アクセスが可能な観測点周辺 の地形情報を正しく把握する必要があり、特に堰のよ うな横断構造物や複雑な河道線形を有するところにつ いては、堰の天端高や形状の確認、河道平面図や航空 写真を用いた地形データの補間によって精度の高い解 析が可能になる.

本検討で示したダム貯水池とその上・下流の山地河 川における流量ハイドログラフの算定は、山地河川に おける河床の抵抗の評価やダム貯水池の適切な管理を 行う上での重要な情報を与えることから、今後多くの ダム貯水池及び山地河川で水位を縦断的に多点で計測 することが望まれる.

6. 結論と今後の課題

本研究では、河道特性の異なる2つの山地流域を対象

(b) 温井ダム上流河川の解析流量とダム流入量の比較 図-8 解析流量と温井ダム流入量・放流量の比較

に、洪水観測水面形時系列に基づいた洪水流解析によ って洪水流量ハイドログラフを算定し、その精度と本 検討の有効性について考察を行った. 以下に主要な結 論と今後の課題を示す.

- 山地河川で縦断的に1kmの間隔で計測された水位縦 1) 断分布には、複雑な河道地形や河床の状況が十分 に反映されており、山地河川でも観測水面形を平 均的に再現することで適切な流量ハイドログラフ を得ることができた.
- 山地河川においても水面形に基づいた洪水流解析 2) は有効であることを示したが、山地河川における 河床の抵抗の評価法に課題がある.特に,巨礫の 形状による抵抗をマニング式による摩擦抵抗の他 に、どのように流れの基礎式へ導入するかについ ては, 今後検討する必要がある.

参考文献

- 福岡捷二 福岡捷二,渡邊明英,原俊彦,秋山正人:水面形の時間 変化と非定常二次元解析を用いた洪水流量ハイドログラ 1) フと貯留量の高精度推算,土木学会論文集,No.761/II-67,
- 2)
- フと貯留重い回加点. pp.45-56,2004. 塚本洋祐,福岡捷二,大山修:草木ダム貯水池の浜小加 動を考慮した洪水流入量,放流量の評価方法に関する研 究,河川技術論文集,第22巻,2016. 中田龍彦,福岡捷二:非平衡粗面抵抗則を用いた一般底 第111、屋所三次元流れへの適用,土木学 3) 会論文集 B1 (水工学), Vol.71, No.2, pp. 43-62, 2015.