非等方透水係数を考慮した三次元浸透流のモデル化と 堤防法先の漏水に関する研究 Modeling of 3D seepage flow in a ground foundation considering anisotropy of permeability coefficient and water leakage around levee toe

19N3100014H 栗原 克幸(河川工学研究室) Katsuyuki KURIHARA/ River Engineering Lab.

Key Words : ground foundation, modeling of pore structure, anisotropy of permeability coefficient

1. 序論

基盤漏水は, 噴砂やパイピングを発生させ, 堤防の 安定性を低下させる場合がある.この危険性を評価す るためには,法先付近の地盤構造に対する浸透流の三 次元機構を明らかにし,パイピングの発達が堤防破壊 危険性に及ぼす機構を解明することが重要である.

これまで、三木ら¹0は、堤防基盤のパイピング破壊に ついて、大型堤防模型実験を行い、パイピング時の動 水勾配と基盤の材料特性の関係を丁寧に整理・考察し ている.また、小高ら²、笹岡ら³は、模型実験から、堤 防基盤層の土質・構造が基盤漏水と堤防破壊危険性に 及ぼす影響について興味ある結果を得ている.一方で、 流れの視点からの考察が十分されておらず、流れの力 学に基づいた浸透流解析を行い、水理学と地盤工学の 双方から考察する必要がある.

基盤浸透流解析では、一般に、透水係数の非等方性 を考慮した Richards式を用いるものの、基盤の非等方透 水係数の値を算定することが難しいため、等方を仮定 し解析する場合が多い.しかし、自然堆積物からなる 堤防基盤層は等方的であり、特に、繰返しの浸透作用 により細粒分粒子が流出した不透水性堤体の直下や、 堤防裏法先付近の基盤層の緩み箇所では、粒度分布や 空隙構造が三次元的に変化し、透水係数の非等方性が 大きくなると考えられる.この非等方透水係数は、基 盤層全体の浸透流の発達に大きく影響を及ぼし、地盤 の構造・材料特性によっては、パイピングの発達を助 長する可能性がある.このため、粒子配置と空隙構造 を考慮した基盤浸透流をモデル化する必要があると考 える.そこで本研究では、非等方透水係数を考慮した

三次元基盤浸透流解析モデルを構築する.そして,本 モデルを堤防基盤漏水実験に適用することで,堤防裏 法先の緩み箇所での非等方性が流れ場に及ぼす影響を 検討するとともに,堤体と基盤の境界での空隙の差が, 基盤浸透流の発達と堤防破壊危険性に及ぼす影響につ いても検討し,実験結果との対照を行う.

透水係数の非等方性を考慮した基盤浸透流の モデル化

(1) 基礎方程式

多孔質体の液相領域について体積平均した三次元の 連続式と運動方程式は、式(1)、式(2)で表せる.

$$\frac{\partial \lambda u_i}{\partial x_i} = 0 \tag{1}$$

$$\lambda \frac{\partial u_i}{\partial t} + \frac{\partial \lambda u_i u_j}{\partial x_j} = \lambda g_i - \frac{\lambda}{\rho} \frac{\partial p}{\partial x_i} + \frac{1}{\rho} \frac{\partial \lambda \tau_{ij}}{\partial x_j} - \frac{F_i}{\rho}$$
(2)

ここに、 u_i : *i*方向の流速、g: 重力加速度、 ρ : 水の 密度、p: 圧力、 τ_{ij} : 粘性によるせん断応力テンソル、 F: 粒子群が水に及ぼす力である、 F_i は、**図**-1に示すよ うに、各方向の流速成分を合成した方向(以下、主流方 向sと呼ぶ.)に対する抵抗力 F_s を用いて、式(3)で表現す る.ここに F_s は、主流方向sについて、局所的にDarcy則 が成り立つと仮定することで導いている.

$$F_i = F_s \frac{u_i}{u_s}, F_s = \rho g \lambda^2 \frac{u_s}{k_s}, u_s = \sqrt{u_1^2 + u_2^2 + u_3^2}$$
(3)

ここに, k: 透水係数, 添え字sは主流方向を意味す る.以上の基礎式によって, 多孔質体内の空隙構造に 応じた浸透流速, 圧力分布を解析することが可能とな る. この際, 多孔質体の透水係数を適切に評価するこ とが重要になる.本研究では, 粒子群の配置, 空隙構 造を考慮することで透水係数の非等方性を評価し, こ れを用いて三次元基盤浸透流を解析する.

(2) 本研究での透水係数の考え方

室田・佐藤⁴は,図-2に示す多孔質体の切断面を考え, 各粒子を線で結ぶ(図-2の灰色線)ことにより得られる 独立空隙と等価な円断面(図-2の赤破線)の直径を独立 空隙径*d**と定義した.そして,この独立した空隙内の

流れがHagen-Poiseuille流れに従うとし、透水係数を以下のように表現した.

$$\bar{k} = \frac{\lambda \rho g}{32\mu} \int_{d_{min}^*}^{\infty} d^{*^2} P(d^*) \, dd^* \tag{4}$$

ここに, μ:粘性係数, P:確率密度関数である.

式(4)では、対象とする多孔質体の代表長さを、任意の 方向に対して作成した切断面より得られる、 d^* の空間 平均値を用いて表現している.式(4)は、新しい考え方 から導かれた発展性の高い式であるが、透水係数の非 等方性や通水断面積の場所的変化を十分表現できてい ない欠点を有する.本研究では、式(4)を流れる方向に よって異なる透水性の違いと多孔質体内の透水性の変 化を考慮した式に修正する.図-3に示すように、主流方 向に対して直交する切断面の透水係数 k_{s_m} を、切断面内 の λ_{s_m} , $d^*_{s_m}$, P_{s_m} を用いて式(5)で表す.

$$k_{s_m} = \frac{\lambda_{s_m} \rho g}{32\mu} \int_{d^*_{s_m min}}^{d^*_{s_m max}} d^{*}_{s_m} {}^2 P_{s_m}(d^*_{s_m}) \, dd^*_{s_m} \tag{5}$$

添え字mは切断面の番号であり、切断面は、主流方向 に対して微小距離 Δs 間隔にとる、切断面毎に透水係数 k_{s_m} が異なる影響を考慮し、式(6)によってコントロール ボリューム内の透水係数 k_s を表すものとする.

$$k_s = \frac{\sum \Delta s}{\sum \frac{\Delta s}{k_{sm}}} \tag{6}$$

本解析では、球形粒子を数値的にランダムに充填さ せ、多孔質体を作成する. 主流方向に直交する切断面 を Δs 間隔で作成し、 d^*_{sm} を計測し、 k_{sm} を求め、式(6)よ り k_s を得る. これを、毎計算stepで行い、非等方透水係 数を考慮した式(3)の抵抗力Fを用い、式(1)と式(2)より流 れ場を計算する.

3. 非等方透水係数

2. でモデル化した手法を用いて,粒子配置,空隙率 が変化した場合の透水係数について調べる.対象とす る材料は,小高ら³の堤防模型実験で用いられた空隙率 0.5の6号珪砂とした.次に,6号珪砂から細粒分を除い た空隙率0.6の材料を用いて堤防法先付近の基盤に緩み 部を設定し,その影響を検討する.図-4に解析に用いた 粒度分布を示す.図-5は,球形粒子を数値的にランダム 充填することで作成した多孔質体を示す.

図-6に, *x*軸, *y*軸, *z*軸をそれぞれ主流方向と仮定した時の, 各方向に直交する切断面毎に計測した*d**のヒストグラムを示す.また, **図-7**に, 多孔質体の各方向に対する切断面内の透水係数*k_{sm}の分布を示す*.**図-6**より, 6号珪砂のランダム充填により作成した多孔質体の*d**は, 概ね正規分布をとることが分る.また,分布形の切断

面のとる方向への依存は小さい.一方,細粒分を除去 し空隙率を大きくした場合では,空隙構造の不均質性 により,切断面のとる方向によって*d**の分布形に差が 現われる.また,図-7によると,空隙率の増大により,

 k_{sm} の変動幅が大きくなり、切断面のとる方向によって k_{sm} に顕著な違いが表れることが分かる.よって、細粒 分が抜出すことで形成されると考えられる緩み箇所で は、透水係数の非等方性が強く表れることが示された.

4. 堤防基盤漏水実験への解析モデルの適用

ここでは、小高ら²の堤防基盤漏水実験を参考に、図-8に示す不透水性堤体直下の基盤層を対象とする.構築 したモデルを用いて、堤防法先に設けた緩み箇所の形 成に伴う透水係数の非等方性が流れ場に及ぼす影響と、 堤体と基盤の境界の空隙差が基盤浸透流に及ぼす影響 を調べ、危険箇所発生の可能性について検討を行う.

4.1. 解析条件

基盤は互層構造をなし、全厚さは0.15mで、被覆土層 の厚さは0.03mとした. 被覆土層に比べ基盤透水層の透 水性は大きい.表-1に検討ケースを示す.緩みの形成に よる流れ場の発達、透水係数の非等方性の影響を検討 するため、緩みが無い場合と、緩みの大きさが8mmの場 合(図-8の赤実線)を検討対象とした.また、雨水や河川 水の浸透作用により、堤体直下に空隙の差が生まれる ことが知られている.この影響を評価するため, case3 として、1メッシュ分、堤体と基盤層の境界に沿って空 隙の大きい領域が存在する場合(図-8の赤点線)も対象と した. 図-8に各層,緩み箇所の平均粒径と空隙率を示し, 粒度分布は図-4を用いた. なお、基盤境界の材料特性は 緩み箇所と同様に設定した. 解析領域は、法先緩み箇 所を含む図-8の水色破線の領域とし、2mm間隔で三次元 計算メッシュを作成した.外力となる河川水位は,実 験での動水勾配0.46となる高さまで上昇させた後、水位 を固定した.法先より堤内地側の水位は,基盤層表層 に相当する高さで維持した.刻み時間は10³secとした.

4.2. 解析結果とその考察

図-9に、奥行方向中央断面(y=D)上における基盤層最上部(z=D)でのcasel,2の法先付近のピエゾ水頭を、図-10に、case2の法先近傍でのx-y、x-z面の流速コンター図を示す. x-y面は基盤層最上部(z=D)での結果を、x-y面は基盤層最上部(z=D)での結果を示している. case2では、法先の緩みの影響により、粒子群から受ける抵抗が減少し、法先に向かう三次元流れが生じる. 緩みのない caselに比べて法先の主流速は約1.7倍増大し、図-10右図に示すように0.008m/sを超える流速が基盤下層に向かって拡大した. これに伴いピエゾ水頭は低減し、その影響が上流まで及んでいる(図-9). この結果から、緩みの形成は、法先近傍だけでなく基盤層全体の流れ場、圧力場に影響を及ぼすことが分かる.

また,図-11に示す,法先に向かう3本の流線(図-11(a) の白線)に沿った各物理量より,同じ土層であっても,

流れの方向に応じて透水係数は変化し、これが流速と 動水勾配に影響を及ぼしていることがわかる.よって, 法先周辺の浸透流の発達機構の検討には、透水係数の 非等方性の影響を適切に取り込んだ解析を行うことが 必要になる.

次に、基盤境界の空隙が基盤浸透流の発達と堤防破 壊危険性に及ぼす影響ついてcase3で検討を行う. 粒子 の移動は、Justinの移動限界流速の考えを用いた. 粒子 は限界流速に達した時点で水と共に運動するものとし、 その場所の流体と粒子の相互作用力Fを0と仮定した. また、移動粒子は地表面に達すると同時に消失すると した. 用いた透水層材料に対し、Justinの粒子移動限界 流速は約0.01m/sである.

図-12に、奥行方向中央断面(y=D)上におけるピエゾ水 頭の時間変化とt=1.0sでの被覆土層に作用する鉛直動水 勾配izを、図-13に、法先近傍の奥行方向中央断面(y=D) でのx-z面の流速コンター図を示す.なお、流れが安定 した時をt=0.0sとし、t=0.0, 0.5, 1.0sでの結果を示す. 0.01m/sを超える高流速(図-13の白色コンター)は、時間経 過とともに、堤体と被覆土の境界沿いに、また、基盤 透水層に向かって広がり、この影響がピエゾ水頭に顕 著に表れている. そして, 図-12のt=0.5sでの鉛直動水勾 配を見ると、実験¹で確認されている噴砂発生の閾値 (ic=0.7~0.9)を超える箇所がx=0.27~0.3mに存在しており, t=1.0sにおいて、法先直下の高流速域が基盤透水層まで 達していることから、この領域ではボイリングが生じ ている可能性が高い.実際に,笹岡ら³の実験では,堤 体直下に水みちが発達した後、被覆土層でボイリング が発生し、これが徐々に川表側に進行することで、被 覆土と基盤透水層の境界に水みちが形成される様子が 観察されている.ただし、本検討では被覆土層と基盤 透水層との間にパイピングのような高流速域の筋は確 認できていない. しかし、三木ら¹の実験では、細粒分 粒子が10%以下,D50粒径が0.3~0.4mm,均等係数が5以 下の緩い地盤で,基盤に0.2~0.6の動水勾配が作用する時, パイピングが発生しやすいとされいる. case3も概ねこ の条件に該当するため, t=1.0sのx=0.24~0.3でi_z>0.2であ るから、被覆土と基盤透水層の境界ではパイピングが 発生する可能性が高い、今後は、土砂の侵食、輸送メ カニズムを考慮できるモデルを開発し、パイピングの 発生機構を解明する必要がある.

5. 結論

本研究では、非等方透水係数の推定法を提示し、新 しい堤防基盤浸透流モデルを水理学的考察に基づいて 構築した.そして、本モデルを堤防基盤漏水実験に適 用することで,法先の緩み箇所と,堤体と基盤の境界

の空隙差が基盤浸透流の発達と堤防破壊危険性に及ぼ す影響について検討を行った.以下に主な結論を示す.

- 室田・佐藤の透水係数推定法を、流れの方向によっ 1 て異なる透水係数の推定法に拡張した. これにより, 粒子配置と空隙構造の三次元性に伴う透水係数の非 等方性を考慮した浸透流解析を可能とした.
- 本手法を堤防模型実験データに適用した結果、法先 2 の緩み形成が基盤層全体の流れ場に影響を及ぼすこ とを説明し、堤防基盤の緩み領域の有無が、堤防安 定性に大きく影響を及ぼすことを示した.
- また,堤防直下に空隙の大きい領域が存在する場合, 3 そこに流れが集中することで境界に水みちが形成さ れ, 基盤構造・材料特性, 外力条件によっては, さ らに被覆土と基盤の境界に水みちを形成し、堤防安 定性を大きく低下させる可能性があることを示した. 今後は、被覆土と基盤透水層の流速差により生じる 土砂の侵食とその輸送メカニズムについて明らかに し、噴砂の発生からパイピングの進行、堤防の破壊 までの一連のメカニズムを明らかにする必要がある.

参考文献

- E木博史. 山田哲也,藤井厚企, 野口典孝, 佐藤正 1) 博:堤防基礎地盤のパイピング破壊に関する模型実
- 時:堤防盗碇地盗のパドセンク破壊に属身る検生突 験,土木研究所資料,第3399号,1996.1. 小高猛司,李圭太,崔瑛,森智彦,森三史郎,林愛 実:浸透に伴う基礎地盤の弱化に起因する堤防法す べり崩壊に関する考察,第5回河川堤防技術シンポジ 2)べり崩壊い ウム論文集, 2017. 「「⁽(三五, 上野俊幸)」 「「「「道型」」
- 笹岡信吾,上野俊幸,森啓年,中村賢人,福島雅紀 諏訪義雄:大型模型実験に基づく河川堤防における 3) 福島雅紀, 河川技術論文集, ング発達過程の考察 2017 P パイ
- 室田明、佐藤邦明:空隙規模の分布による透水係数 4) の評価について、水理講演会講演集、pp.73-78, 1969.