流域を構成する支川群の水収支の時空間分布と その統合化による石狩川流域治水の検討 Temporal and geographical distributions of water volume in tributaries and integrated study on Ishikari river basin

18D3101027G 石井 優太朗(河川工学研究室) Yutaro ISHII / River Engineering Lab.

Key Words : Ishikari river, tributary runoff, storage water volume, integration analysis of river basin

1. 序論

近年の水害の頻発化、激甚化により、河川流域の関 係者の協力から、水害を軽減させる流域治水の実践が 求められている. このためには、本川および支川の洪 水を一体的に解析し, 流域に降った豪雨が, どの時間 帯に、どこで貯留されているかについて、流域の水収 支の視点から,洪水流下過程を明らかにすることが大 切である.このためには、河川流域の地形特性と、降 雨の時空間的特性を踏まえ、実測の水位データ、河道 データに基づき,非定常洪水流解析による流域一体の 洪水流の検討が求められる.しかし,洪水観測体制は 進んできているものの,水位データ,河道データ共に 観測点が少なく、測定精度も低いことから、 2次支川等 からの流出量は流出解析を用いて推定せざるを得ない のが現状である. 福岡 ¹は、洪水時の詳細な水面形の観 測値を用いた解析を行い, 鬼怒川流域における豪雨と 貯留量の時空間的な分布を流域全体で評価し, 洪水形 成の仕組みを説明している.同様に、田端ら²は、令和 2年7月球磨川豪雨を対象とし、洪水流と河床変動解析 を

流域一体で行い,流域治水実践の必要性を強調している.見上ら³は,利根川上流域において,2次支川からの流出量をタンクモデルにより求め,本川および1次支 川一体で非定常洪水流計算を行い,支川群からの流出 ハイドログラフが,本川の洪水流の流下過程に大きな 影響を与えることを示している.

本研究では、図-1に示す石狩川下流域を対象とし、2 次支川を含めた本支川一体での非定常洪水流計算を行っている.この際、十分なデータのない2次支川流域に 関しては貯留関数法を用い、流出量を推算することで、 各支川群や本川の水収支や貯留量の時空間的な分布か ら、支川群の本川洪水流形成に及ぼす影響を分析し、 石狩川流域治水に向けた検討結果を示す.

2. 対象洪水の特徴,対象流域,解析条件

石狩川は、広大な流域面積を持ち多数の支川が流入 している.特に27kmから40kmの下流域は、低平地であ り、石狩川洪水の背水を強く受ける1次支川、幾春別川、

図-1 石狩川下流域流域図

2021年度 中央大学理工学部都市環境学科 卒業論文発表会要旨集(2022年2月)

図-2 石狩川流域降雨分布

表-1 計算諸条件					
河川名	境界条件	粗度係数	河川名	境界条件	粗度係数
石狩川	月形 (58km) 石狩大橋 (26.6km)	0.017~0.045	漁川	日の出橋(II.4km)	0.035
幾春別川	西川向 (7km)	0.033~0.04	島松川	下島松(5.7km)	0.035
夕張川	由仁(22.1km)	0.027~0.045	祝梅川	貯留関数法	流出率:0.617
千歳川	西腰(40.5km)	0.022~0.045	長都川	貯留関数法	流出率: 0.6 1
旧美唄川	第一旧美唄橋(4km)	0.035	旧夕張川	貯留関数法	流出率: 0.7
幌向川	豊幌(3.4km)	0.035	輪厚川	貯留関数法	流出率:0.65
嶮淵川	嶮淵(7.2km)	0.035	※貯留関数法は1次支川への横流入とする		

夕張川,千歳川が合流する.また,それぞれの1次支 川には、図-1で示すように流域面積の大きい2次支川が 複数合流している.平成28年8月北海道豪雨では、8月17 日~23日の1週間に、台風7号、11号、9号が北海道に上 陸し、石狩川流域に大きな被害をもたらした.また、3 個の台風の進路がそれぞれ異なっており、図2の各地点 でのハイエトグラフが示すように、台風7号では千歳川 流域全体が降雨の中心、11号、9号では上流域が降雨の 中心となり、降雨分布が異なっていた.

本研究では、この3つの台風について、観測水位デー タ等のある2次支川を含む本支川を一体で扱い、河道縦 横断面形のあるすべての河川で非定常平面2次元洪水流 計算を行った.また、河道データ、水位データのない2 次支川に関しては、星ら⁴により開発された貯留関数法 に、各支川で検討、設定された係数⁵⁰を用い、流出量を 推定し、1次支川との合流点において流入ハイドログラ フを横流入量として加えることで考慮した.境界条件 および計算条件について表-1に示す.また、以下に解析 で用いた基礎式(1)、(2)を示す.

$$\frac{\partial h}{\partial t} + \frac{\partial U_j h}{\partial x_j} = 0 \tag{1}$$

$$\frac{\partial U_i h}{\partial t} + \frac{\partial U_i U_j h}{\partial x_j} = -gh \frac{\partial z_s}{\partial x_i} + \frac{\partial h \tau_{ij}}{\partial x_j} - \frac{\tau_{bi}}{\rho}$$
(2)

ここに, i, j=1~2, t:時間, U_i :i方向の水深平均流 速, g:重力加速度, h:水深, ρ :水の密度, z_i :水 位, τ_{h} :底面せん断応力, τ_{ij} :水深平均されたレ イノルズ応力, z_i :河床高である.

3. 各1次支川と2次支川との関係

検討流域において、ティーセン法より累加降雨量を 求め、対象河川上流端および支川群からの流入量を加 えた解析流入量Qinと、各流末からの解析流出量Qout を、さらにこれらの差により求められる貯留率の時間 変化dS/dtを求めた.これより、流入量Qin、流末流出 量Qoutの積分値である解析総流量、及び貯留率の時間 変化の積分値である貯留量の時間変化を求め、作図し た.これより、2次支川の洪水が1次支川の洪水形成に どのように関わっているのか、地形特性と水収支の解 析結果から考察する.

(1) 幾春別川

幾春別川は、図1に示すように、上流には桂沢ダムが あり、降雨流出量を調節する機能を有している.図-2で 示すように、幾春別川流域が降雨の中心となったのは 台風11号であった.このため、図-3の水収支の時間分布 が示すように、2洪水目から桂沢ダムに貯留し、3洪水目 において河道への流出量を減らしていることが分かる. ただ、下流域は河床勾配が1/1000と緩やかであることか ら、石狩川の水位上昇の影響を受け、洪水時には幾春 別川の河道貯留が顕著となる.図-3において、8月24日 では幾春別川河道への流入量が他の2洪水と比べ少ない にも関わらず、河道貯留量が多いことはこのことによ る.

また,合流部から4kmの地点では,幾春別川流域の 40%の流域面積を持つ2次支川,旧美唄川が流入する. 旧美唄川は,以前は石狩川に直接合流していた1次支川 であったが,河道改修により美唄川の下流部のみを切 り離し,付け替えることでできた2次支川である.その ため,旧美唄川の集水域は,平野部の水田や都市部で あり,洪水到達時間が短いことから,急激な降雨では 極めて小さい貯留で流下する.このことは,図-3で示す

幾春別川流域の水収支の時間分布の図において、旧美 唄川流域での流出率が、3洪水すべてにおいて、初期 は0.5と低いものの、最終的に0.9になることからも明ら かである.

(2) 夕張川

夕張川は、上流に夕張シューパロダムがあり、石狩 川との合流部付近で夕張川流域の25%の流域面積を持つ 幌向川が合流する.夕張シューパロダムは、日本にお いて最大規模の多目的ダムであり、総貯水容量が4.3億 m³と、大きな洪水調節機能を有する.これにより、本洪 水においても、累計7千万 m³貯留し、下流域の水位低下 に果たす効果は大きい.ただ、夕張川下流域は、低平 地のため、常に石狩川の背水の影響を受ける特性を有 している.そのため、図-4の夕張川の水面形が示すよう に、7kmの清幌床止より下流では、石狩川の背水を受け、 常に水位が一定となっている.

このように、幾春別川下流域と似たような性質を持 つ夕張川であるが、2次支川の幌向川は、集水域に夕張 山地があることにより、旧美唄川とは異なる性質を持 つ、そのため、洪水到達時間が旧美唄川と比べ長いこ とと相まって、長期にわたって河道貯留が生じる、こ

のことは、図6に示す夕張川流域の水収支の時間分布で も明らかであり、幌向川は図-4の旧美唄川での水収支の 時間分布と異なり、全洪水において初期から流出率が 0.6程度であり、山地部に長期間貯留していることが分 かる.

(3) 千歳川

千歳川は、上流に支笏湖があり、さらに2次支川漁川 の漁川ダムにより流出が抑制される. 支笏湖は, 貯水 量が琵琶湖に次いで2番目に多く、本洪水でも総降雨量 の1割を貯留している.ただ,40km付近より下流では河 床勾配が1/6000~7000と非常に緩やかであり、貯留しやす い河道特性を持つ. 図-6の8月22日4時の千歳川水面形が 示すように、石狩川の水位が高かった2洪水目では40km 付近まで背水がおよんだ.また,千歳川の背水現象は, 石狩川によるものだけでない、1洪水目は、千歳川流域 での降雨となったため、図-6の8月17日23時の水面形が 示すように、左岸側からも流れ込み、千歳川流域の15% の流域面積を持つ漁川や島松川の合流部より上流でも 水位上昇が見られる.このため、図-7の水収支の時間分 布が示すように、ピーク時では降雨の8%の河道貯留が 生じ,支笏湖からの流出量は河道で貯留され,支川群 からの流出のみが石狩川へ流下していることが分かる. さらには、上流に夕張山地を持つ他の2つの1次支川と比 べ、大きな山地を持たず、流域が火山灰層で覆われて いることから、流出率が低い.これは、図-3,図-5の2つ の1次支川の流出率が0.7程度に対し、図-7より、千歳川 の流出率が0.3程度であることからも明らかである.以 上のことから,千歳川流域は,石狩川本川に非常に大 きな貯留効果をもたらす支川流域であることが分かる.

4. 1次支川流域のハイドログラフの本川への影響

3.で検討した各1次支川流域からの流出量が、本川の

洪水流下にどのような影響を及ぼすかについて,図-8の 水収支の時間分布と図-9の貯留量の時間分布を基に検討 する.1洪水目では、降雨の中心が千歳川や夕張川であ ったこともあり、図-8から、石狩川での総流出量の25% ほどを夕張川と千歳川が占めていることが分かる.た だ、2洪水目、3洪水目と洪水の中心が上流へ行くにつれ、 総流出量に占める石狩川上流からの流出割合が増え、 支川群からの流出量の割合が減少している.本川の水 位上昇により、図-9で示すように支川群における貯留量 も増えており、特に2洪水目では3支川群の貯留量(赤色) は本解析区間全体(青色)の22%にまで及んでいる.

5. まとめと今後の課題

本研究では、石狩川下流域における流域治水の検討 のため、各支川流域における水収支の時空間分布を分 析し、それを統合化することによって本川の洪水形成 過程を明らかにした.本研究で示した流域の地形と、 降雨の時空間分布特性に基づく流域の水収支と河道貯 留量の分析から、流域の治水安全度を上げるため、各 小流域で考えるべきことはどのようなことか、流域治 水の今後の課題である.

参考文献

- 福岡捷二:洪水水面形観測情報の広域的・統合的活 用による流域治水の考え方の構築に向けて、河川技 術論文集,23巻,pp.251-256,2017
- 2) 田端ら:令和2年7月球磨川豪雨における洪水流と氾 濫流の一体解析による人吉市街地と狭隘区間の集落 の被害分析,河川技術論文集,27巻, pp.597-602,2021
- 見上ら:利根川上流域の本・支川を一体とした洪水 流解析ー 流域治水への活用に向けてー,土木学会論文 集B1, Vol. 77, No. 2, pp. I_427-I_432, 2021
- 4) 星ら:雨水流法と貯留関数法との相互関係,水工学講 演会論文集,26巻, pp.273-278,1982
- 5) 国土交通省:「実時間洪水予測システム理論」解説 書,(財)北海道河川防災研究センター,pp. 7-8, 2004