開水路三次元粗面乱流場における流速・圧力分布に関する研究

Study on vertical velocity distribution and pressure in the three dimensional open-channel flow with rough bed

19D3102008C 宅和 佑悟(河川工学研究室) Yugo TAKUWA / River Engineering Lab.

Key Words : Q3D-FEBS, vertical velocity distribution, non-hydrostatic pressure, Reynold's stress

1. 序論

竹村ら(2019)^Nにより開発されたQ3DFEBSは、3次関数で流 速鉛直分布を仮定することにより、平面二次元解析法の枠 組みで水面・底面・水深平均の運動方程式を用いて、実河 川の流速・応力場を解き、三次元的な洪水流と土砂移動現 象を適切に説明している²³.こうした実河川の複雑な流況 の解析に適用可能なモデルの適用範囲を明らかにすること は重要である.計算機性能の向上により解析範囲を広げた 3D解析が、数10kmスケールの洪水河床変動等についてQ3D 解析の精度を上回るとは限らず^N、特に複雑な河床形状を持 っ上流域では、実用的なQ3DFEBSが主流となりうるはずで ある.巨岩・巨石からなる急流河川等へQ3DFEBSの解析範 囲を広げるために、用いている仮定や条件等について改善 が必要であると考える.

本研究では底面近傍の力学現象を適切にとらえることの できるQ3D解析法の構築に向けて、流速鉛直分布、圧力分 布に着目し、新しいモデルを提案する. さらに提案したモ デルの精度検証のために、福島ら(2022)%による詳細な三次 元解析情報を用い、モデルの適用性を検討する. (参照;研 究のフローチャート(図1))

2. Q3D-FEBSの枠組みと課題, 改良点について

(1) Q3D-FEBSの枠組みと課題について

Q3D-FEBSでは,流速鉛直分布について,表1の条件 (a)~(d)を考慮した3次関数形(式(1))を用いて流れ場を評価 している.

$$u_{i}(\eta_{1}) = U_{1i} + \Delta u_{1i} (12\eta_{1}^{3} - 12\eta_{1}^{2} + 1) + \delta u_{1i} (-4\eta_{1}^{3} + 3\eta_{1}^{2}) \qquad \dots (1)$$

 $(\Delta u_{1i}: u_{si} - U_{1i}, \delta u_{1i}: u_{si} - u_{bi})$ この際,底面流速は,底面上の運動方程式で考慮さ

れるが、底面近傍の力学現象に密接に関係する底面流 速勾配(e)を考慮していないために、巨石・巨岩等の影響 により生じる底面付近の逆流等の水理現象を説明でき ない.

また、底面の位置に関しては、従来便宜的に「水深 の3(%)の高さ河床面から離れた位置($\delta z_b = 0.03h$)」と 定義されており、底面より下の河床面近傍に関して、 流れの評価は行われていない、河床面近傍は水理学的 に複雑な領域であるが、魚類等の生息・繁殖地となり、 河川環境的に重要な領域であることから、正しい解析 ができることが望まれている.

Q3D-FEBSでは、鉛直方向運動方程式の圧力項につい て、流速鉛直分布(*u*,*v*,*w*)と一体的に非静水圧計算が行 われる.この際、計算の安定化のために、水平方向流 速(*u*,*v*)については、平均流が仮定される.さらに、鉛 直方向流速(*w*)については直線近似を行い、かつ(*u*,*v*)に おける平均流からのずれを平均鉛直方向流速Wとして 考慮する.この際、特に河床面近傍において鉛直スケ ールの大きく、鉛直方向流速が複雑な場にQ3D-FEBSを 適用するには、従来の解析法について検討が必要であ る.

(左; η ₁ 軸, 右; η ₂ 軸)	
(a); $u_{1i}(0) = u_{si}$	(f); $u_{2i}(0) = u_{bi}$
(b); $u_{1i}(1) = u_{bi}$	(g); $u_{2i}(1) = u_{0i}$
(c); $\int_0^1 u_i(\eta_1) d\eta = U_{1i}$	(h); $\int_0^1 u_i(\eta_2) d\eta_2 = U_{2i}$
(d); $\frac{\partial \tilde{u}_i}{\partial \eta}\Big _{\eta_1=0} = 0$	(i) $\left. \frac{\partial u_i}{\partial \eta} \right _{\eta_2 = 0} = -\frac{\tau_{bi}}{\rho v_{tb}}$
(e) ; $\frac{\partial u_i}{\partial \eta}\Big _{\eta_1=1} = \frac{\tau_{bi}}{\rho v_{tb}}$	(j) ; $\frac{\partial u_i}{\partial \eta}\Big _{\eta_2=1} = \frac{\tau_{0i}}{\rho v_{t0}}$
$(\eta_1 = \frac{z_s - z}{h})$	$(\eta_2 = \frac{z_b - z}{\delta z_b})$
(未知数について)	
U _{1i} ; 水深高さ平均流速,U _{2i} ; 底面高さ平均流速,	
$ ho$;密度, $ u_t$;渦動粘性係数, $ \tau_i$;せん断応力	

表-1 流速鉛直分布決定のための条件について

(2) 課題を踏まえた改良点について

以下に,Q3D-FEBSの有する流速・圧力分布の課題に ついて検討を行う.まず流速分布に関しては2層モデル (それぞれ領域1,2とする)を提案し,検討する.

具体的には領域1において,底面流速勾配に関する拘 束条件(表1;(e))を新しく考慮した4次関数形(式2a)で近似 する.また,従来は非計算領域として扱ってきた領域2 の流速分布に関して,底面・河床面における流速勾配 に関する項を含めた5つの拘束条件(表1;(f)~(j))につい て考慮した4次関数形(式2b)で流速分布を近似する.底 面の位置に関しては,流速鉛直分布の変曲点となるレ イノルズ応力分布(-uw)の極大位置を基準に設定を行 った.この際に2層モデルの物理的な境界として後述す る大本ら(2002)⁴の検討を参考とした.これらの条件を考 慮して,河床面近傍の複雑な流速分布を考える.

$$u_{i}(\eta_{1}) = U_{1i} + \Delta u_{1i}(-30\eta_{1}^{4} + 60\eta_{1}^{3} - 30\eta_{1}^{2} + 1) + \delta u_{1i}(15\eta_{1}^{4} - 28\eta_{1}^{3} + 12\eta_{1}^{2}) + \frac{\partial u_{i}}{\partial \eta}\Big|_{\eta_{1}=1} \left(\frac{5}{2}\eta_{1}^{4} - 4\eta_{1}^{3} + \frac{3}{2}\eta_{1}^{2}\right) \qquad \dots (2a)$$

$$\begin{split} u_{i}(\eta_{2}) &= U_{2i} + \\ &\Delta u_{2i}(-30\eta_{2}^{4} + 60\eta_{2}^{3} - 30\eta_{2}^{2} + 1) \\ &+ \delta u_{2i}(15\eta_{2}^{4} - 28\eta_{2}^{3} + 12\eta_{2}^{2}) \\ &- \frac{\partial u_{i}}{\partial \eta}\Big|_{\eta_{2}=0} \left(-\frac{5}{2}\eta_{2}^{4} + 6\eta_{2}^{3} - \frac{9}{2}\eta_{2}^{2} + \eta_{2} \right) \\ &+ \frac{\partial u_{i}}{\partial \eta}\Big|_{\eta_{2}=1} \left(\frac{5}{2}\eta_{2}^{4} - 4\eta_{2}^{3} + \frac{3}{2}\eta_{2}^{2} \right) \end{split}$$
... (2b)

 $(\Delta u_{2i} {:}\, u_{bi} - U_{2i}, \ \delta u_{2i} {:}\, u_{bi} - u_{0i})$

圧力分布に関しては、従来は水平方向流速と直線分 布とした鉛直方向流速を水深積分した運動方程式(鉛直 方向)に代入し、非定常項を無視した2次関数近似式で評 価される.これに対し、水平方向流速の3次関数(式1)、4 次関数近似式(式2a,b)を連続条件を満たす鉛直方向流速 を代入した近似式(それぞれ8次関数近似式(①)、10次関

水面(s) usi 0 Z_{s} 上層(領域1) h 底面(b) 1 u_{bi} Z_{b} η_1 uoi 下層(領域2) δz_b 河床面(0)^{//2} Z_0 図-2 新しいモデルにおける変数について

数近似式(②))について検討した.このように仮定した流 速分布式を用いることで,非静水圧分布の正確な評価 を高精度に行う狙いがある.この際,領域1については, 水面($\eta_1 = 0$)から任意の無次元鉛直座標 η_1 まで水深積分 を行う.同様に領域2について底面($\eta_2 = 0$)から任意の 無次元鉛直座標 η_2 まで水深積分を行い,上層(領域1)に おける底面非静水圧を足すことで計算を行っている.

3. 3次元数値移動床実験の概要

(1) 数値実験の概要

流速・圧力分布の考察のために、福島ら(2022)⁴による LESを用いた高精度な開水路粗面乱流の三次元数値解析 結果を用いる.解析では、図3の幅0.02(m)、長さ1.5(m)、 の開水路に半径が0.004(m)の半円柱を粗度要素とする勾 配1/20の水路に定常流(0.171(l/s))を流している.アスペク ト比1.41、相対水深3.55であり、プラントルの第二種二 次流、velocity-dip現象を示す癖の強い流速分布が現れる.

(2) 最小二乗法による近似関数の次数についての検討

こうした複雑な流況に対して、まずは流速鉛直分布 に着目し、奥石ら(2012)^のの検討を参考とし、近似関数の 次数について拘束条件等を考慮しない状態で最小二乗 法を用いた検討を行った(宅和ら(2022)⁷).

a) 最小二乗法の枠組み

最小二乗法においては、解析解と近似式との誤差を できるだけ小さくするように近似曲線の係数が設定さ れる.式(3)において、数値解析データを与えることに より多項式関数の係数*u_{ni}を*求めることができ、N次の 多項式近似関数を導くことができる.

$$u_i(\eta) = \sum_{n=1}^N u_{ni} \eta^n \qquad \dots (3)$$

b) 検討結果

水路中央における粗度谷部における検討結果につい て図4に示す.

図-3 数値移動床水路の外観について

図-4 最小二乗法を用いた検討(粗度谷部)

流速鉛直分布を説明するため、主流速u、二次流速 v,wに関しては一つの関数形でおおむね8~9次程度で近 似が可能である. 福島ら³による複雑な開水路粗面乱流 場では,逆流域等,底面近傍の複雑な流況が生じ,高 次の次数が必要である.二次流に関しても,値が主流 と比べて1割から2割であるが、土砂輸送に影響を及ぼす ことから河川工学上非常に重要であり、高次精度によ る評価を行う必要があること示した.

4. 従来法との比較検討結果

流速鉛直分布と圧力分布に関して,本検討で提案し た乱流2層モデルと準三次元モデル(Q3D-FEBS)と比較し

た結果を以下に示す、圧力分布は、それぞれ3次関数、2 層モデル(4次関数カップリング)近似式を用いて連続式 から鉛直方向流速について求め、これらより求めたも のと,従来の直線近似圧力分布式を代入したものを比 較した. なお,実験は定常流で行われているため,本 研究でも定常流で検討した. さらに図化の際にそれぞ れの圧力の値を静水圧で無次元化しているが、静水圧 算出の際に用いる水深は計算の安定化のために平均水 面の位置から、河床面までの高さを水深として設定し ている.

(1) 検討結果について

ここでは、水路中央断面における粗度谷部・頂部の 検討結果について考察する.

流速鉛直分布(図5)に関しては、粗度谷部において、 粗度要素を乗り越えた流れが隣接する粗度要素にぶつ かることで逆流が発生している.新しい2層モデルはこ の逆流現象をよく説明できている.さらに、河床から 水面までの連続した分布について粗度谷部・頂部とも に従来モデルと比べて精度が向上していることがわか る.よって、これら高次精度が必要な流速鉛直分布を もつ流況について、底面・河床面それぞれの物理的な 拘束条件を考慮した4次関数の2層モデルでほぼ説明でき ると考えている.

圧力分布(図5)に関しては、流れが粗度にぶつかるこ とにより水面変動が生じるが、この非静水圧成分が近 似式により把握できるかがポイントである.本研究で は、計算の安定化のために平均的な水面高で水面を求 め、設定した水面付近の変動については考慮していな い.一方で、この仮定に対して、相対水深の大きい流 況であることから,特に粗度頂部における底面付近で 非静水圧成分が発生していることがわかる.また、粗 度谷部においては, 粗度要素間隔が極めて狭いため, 解析では非静水圧成分がほとんど現れていない.従来 の近似式では、こうした非静水圧成分はほとんど計算 できず,ほぼ静水圧近似となった.同様に,①式に関 しても非静水圧成分を評価できなかった. ②式に関し ては、粗度頂部・谷部それぞれ、静水圧成分から値の 大きなずれが見られる.これは、圧力分布検討時の未 知量を三次元数値解析における既知量から設定したた め、②式に勾配の項(e),(f),(j)の影響が及んだものと考えら れる. 複雑な流れにあっても, 圧力分布は線形からの ずれは小さく, 非静水圧は従来の式において近似が可 能であるように見えるが、本研究の検討対象の流れ場 が特殊であることを考慮する必要がある. そのため, 今後は粗度要素間隔の広い数値実験等に対して検討を 行い, 圧力分布についてさらに検討する予定である.

(2) 底面の位置について

底面の高さについて,底面での流速を求めるために 従来は水深の3%を与え,便宜的に設定がされていたが, 水深の変化の大きい流況にQ3D-FEBSを適用すると,河床 面近傍の流速,圧力場の評価が結果に影響を与える. そのため,底面をどこに設定するかについては,課題¹⁾ であった.また,4次関数近似式における底面流速勾配 の影響が計算の不安定化をもたらすことから,流速鉛 直分布の変曲点と物理的指標を結び付ける底面設定手 法の確立が必要であった.こうした背景の中,例えば, 大本ら⁴は,PIV法を用いた画像解析より,階段状粗面

において主流速の変曲点がせん断応力の極大位置と一 致することを示していることを参考に、レイノルズ応 これにより、図5の主流速分布から変曲点の位置に底面 が概ね一致していること, 圧力分布から底面の下で非 静水圧成分が特に強く表れていること等から物理的な 底面設定をレイノルズ応力の極大位置とすることが可 能なように見える.また、図6に粗度谷部におけるレイ ノルズ応力 $-\overline{u'w'}$ の鉛直分布を示しているが、福島らの 検討²を参考とした基準面(粗度頂部から半径の1/3下が った位置)からの水位比で表した際に、レイノルズ応力 の極大位置は**粗度の縦断変化**に対して、およそ10~ 20(%)の位置に現れている.よって、今後解析を行う際 には、レイノルズ応力-uwを基準に粗度高さとの関係 から、底面位置についての設定を行うのがよいと考え る.

図-6 レイノルズ応力の極大位置(粗度谷部)

5. 結論と今後の課題

巨石の多い複雑な洪水流況の河川の解析にQ3D-FEBS を適用する際に,流速・圧力分布をどのように与える べきかに注目して検討を行った.本研究で提案した2層 に分けたモデルは,逆流域の表現が可能となり,流れ 場の評価を改善することができた.圧力分布について は,対象実験の特性により非静水圧成分の評価自体を 行うことができなかった.今後は,図-1のフローチャー トに示したように,本解析法をQ3D-FEBSに組み込んだ 解析を行い,モデルの適用性を高める予定である.

参考文献

- 竹村ら:土木学会論文集 B1(水工学), Vol.75, No.1, pp.61-80, 2019
- 福島ら; 土木学会論文集 B1(水工学), Vol.78, No.2, pp.607-612, 2022
- 3) 森本ら;土木学会論文集 B1(水工学), Vol.77, No.2, pp.757-762, 2021
- 4) 長谷部ら;土木学会論文集 B1(水工学), Vol.78, No2, pp.967-972, 2022
- 5) 大本ら;水工学論文集, Vol.46, pp.517-522, 2002
- 6) 輿石ら;水工学論文集, Vol.56, pp.835-840, 2012
- 7) 宅和ら:日本流体力学会年会 2022, 2022